Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-9dmbd Total loading time: 0.77 Render date: 2021-03-06T02:59:23.667Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A Computational Study of the Effect of Experience on Problem/Solution Space Exploration in Teams

Published online by Cambridge University Press:  26 July 2019

Marija Majda Perisic
Affiliation:
University of Zagreb;
Tomislav Martinec
Affiliation:
University of Zagreb;
Mario Storga
Affiliation:
University of Zagreb; Luleå University of Technology;
John S Gero
Affiliation:
University of North Carolina at Charlotte; George Mason University
Corresponding
E-mail address:

Abstract

This paper presents the results of computational experiments aimed at studying the effect of experience on design teams’ exploration of problem-solution space. An agent-based model of a design team was developed and its capability to match theoretically-based predictions is tested. Hypotheses that (1) experienced teams need less time to find a solution and that (2) in comparison to the inexperienced teams, experienced teams spend more time exploring the solution-space than the problem-space, were tested. The results provided support for both of the hypotheses, demonstrating the impact of learning and experience on the exploration patterns in problem and solution space, and verifying the system's capability to produce the reliable results.

Type
Article
Creative Commons
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2019

References

Ahmed, S., Wallace, K.M. and Blessing, L.T.M. (2003), “Understanding the differences between how novice and experienced designers approach design tasks”, Research in Engineering Design, Vol. 14 No. 1, pp. 111. https://dx.doi.org/10.1007/s00163-002-0023-zCrossRefGoogle Scholar
Björklund, T.A. (2013), “Initial mental representations of design problems: Differences between experts and novices”, Design Studies, Vol. 34 No. 2, pp. 135160. https://dx.doi.org/10.1016/j.destud.2012.08.005CrossRefGoogle Scholar
Cross, N. (2001), “Design cognition: results from protocol and other empirical studies of design activity”, In: Newstatter, W. and McCracken, M. (Eds.), Design Knowing and Learning: Cognition in Design Education, Elsevier, Oxford, UK. pp. 79103.CrossRefGoogle Scholar
Cross, N. (2004), “Expertise in design: an overview”, Design Studies, Vol. 25 No. 5, pp. 427441. https://dx.doi.org/10.1016/j.destud.2004.06.002CrossRefGoogle Scholar
Gero, J. S. (1990), “Design prototypes: A knowledge representation schema for design”, AI Magazine, Vol. 11 No. 4, pp. 2636.Google Scholar
Gero, J.S., Jiang, H. and Williams, C.B. (2013), “Design cognition differences when using unstructured, partially structured, and structured concept generation creativity techniques”, International Journal of Design Creativity and Innovation, Vol. 1 No. 4, pp. 196214. https://dx.doi.org/10.1080/21650349.2013.801760CrossRefGoogle Scholar
Gero, J.S. and Kannengiesser, U. (2004), “The situated function-behavior-structure framework”, Design Studies, Vol. 25 No. 4, pp. 373391. https://dx.doi.org/10.1016/j.destud.2003.10.010CrossRefGoogle Scholar
Kahneman, D. (2011), Thinking, Fast and Slow, Farrar, Straus and Giroux, New York.Google Scholar
Kavakli, M. and Gero, J. (2002), “The structure of concurrent cognitive actions: a case study on novice and expert designers”, Design Studies, Vol. 23 No. 1, pp. 2540. https://dx.doi.org/10.1016/S0142-694X(01)00021-7CrossRefGoogle Scholar
Liikkanen, L.A. and Perttula, M. (2009), “Exploring problem decomposition in conceptual design among novice designers”, Design Studies, Vol. 30 No. 1, pp. 3859. http://doi.org/10.1016/j.destud.2008.07.003CrossRefGoogle Scholar
Lloyd, P. and Scott, P. (1997), “Discovering the design problem”, Design Studies, Vol. 15 No. 2, pp. 125140. https://dx.doi.org/10.1016/0142-694X(94)90020-5CrossRefGoogle Scholar
Maher, M.L. and Gero, J.S. (2002), “Agent models of 3D virtual worlds”, Proceedings of the 2002 Annual Conference of the Association for Computer-Aided Design in Architecture, Pomona, California, October 24-27, 2002, Association for Computer-Aided Design in Architecture, Pomona, pp. 127138.Google Scholar
McComb, C., Cagan, J. and Kotovsky, K. (2015), “Rolling with the punches: An examination of team performance in a design task subject to drastic changes”, Design Studies, Vol. 36, pp. 99121. https://dx.doi.org/10.1016/j.destud.2014.10.001CrossRefGoogle Scholar
Milovanovic, J. and Gero, J.S. (2018), “Exploration of cognitive design behavior during design critiques”, Proceedings of the 15th International Design Conference (DESIGN 2018), Dubrovnik, Croatia, May 21-24, 2018, The Design Society, Glasgow, pp. 20992110. https://dx.doi.org/10.21278/idc.2018.0547CrossRefGoogle Scholar
Perišić, M.M., Štorga, M. and Gero, J.S. (2017), “Building a computational laboratory for the study of team behaviour in product development”, Proceedings of the 21st International Conference on Engineering Design (ICED 17), Vancouver, Canada, August 21-25, 2017, The Design Society, Glasgow, pp. 189198.Google Scholar
Perišić, M.M., Štorga, M. and Gero, J.S. (2019), “Exploring the Effect of Experience on Team Behavior: A Computational Approach”, In: Gero, J.S. (Ed.), Design Computing and Cognition'18 (DCC'18), Springer, Cham, pp. 595612. https://dx.doi.org/10.1007/978-3-030-05363-5_32CrossRefGoogle Scholar
Petre, M. (2004), “How expert engineering teams use disciplines of innovation”, Design Studies, Vol. 25 No. 5, pp. 477493. https://dx.doi.org/10.1016/j.destud.2004.05.003CrossRefGoogle Scholar
Sun, G., Yao, S. and Carretero, J.A. (2016), “An experimental approach to understanding design problem structuring strategies”, Journal of Design Research, Vol. 14 No. 1, pp. 94117. https://dx.doi.org/10.1504/JDR.2016.074778CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 254 *
View data table for this chart

* Views captured on Cambridge Core between 26th July 2019 - 6th March 2021. This data will be updated every 24 hours.

Access
Open access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Computational Study of the Effect of Experience on Problem/Solution Space Exploration in Teams
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Computational Study of the Effect of Experience on Problem/Solution Space Exploration in Teams
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Computational Study of the Effect of Experience on Problem/Solution Space Exploration in Teams
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *