Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T05:20:29.620Z Has data issue: false hasContentIssue false

Factors Preventing the Use of a Lightweight Design Workflow that is Inspired by the Human Locomotive System

Published online by Cambridge University Press:  26 July 2019

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A workflow for the design process of technological products was derived from a model that describes the interplay of lightweight design principles in the human locomotive system. This workflow is not yet ready to be used. In this paper, starting points for new research with the goal to enable the use of the workflow are discussed. Using the interplay of lightweight design principles of the human body in technical applications is approached because it is claimed that the interplay leads to an additional reduction of mass. This was proven for a technological system in a previous study. This study lead to a workflow to consider the interplay of the principles in the design process of the technological system. In this paper, the essential parts of this workflow are described in an abstract diagram as a calculation workflow. Subsequently, inputs and outputs of the workflow are identified. Then, the calculation workflow is integrated into the process of design. Afterwards, it is discussed that tension chording, which is one of the lightweight design principles, needs further investigation, because the interplay of the principles can only be used if the principles themselves are used.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2019

References

Ananthanarayanan, A., Azadi, M. and Kim, S. (2012), “Towards a bio-inspired leg design for high-speed running”, In: Bioinspiration & Biomimetics, Vol. 7 No. 4, p. 46005. https://doi/org/10.1088/1748-3182/7/4/046005Google Scholar
Bartz, M., Gößling, R., Schafran, T. and Bender, B. (2017), “Entwicklung eines bioinspirierten Gelenkarmroboters mithilfe der Kopplung von Mehrkörpersimulation und Topologieoptimierung. Koblenz: 35”, CADFEM Ansys Simulation Conference.Google Scholar
Bartz, M., Brand, H. and Bender, B. (2018a), “Examing lightweight design potential of the human musculoskeletal system by using the example of an articulated arm robot”, In: Book of Abstracts: 1. Symposium for Lightweight Design in Product Development. 13. - 15. June 2018. Zurich.Google Scholar
Bartz, M., Gößling, R., Remus, R. and Bender, B. (2018b), “Development of a bioinspired approach for the design of kinematic chains”, In: Proceedings of the DESIGN 2018, 15th International Design Conference Dubrovnik, Croatia, 21/05/2018 - 24/05/2018, pp. 975984. https://doi/org/10.21278/idc.2018.0330Google Scholar
Bartz, M. (2019), Transfer des Muskuloskelettalen Leichtbaus auf Offene Kinematische Ketten. Verlag Dr. Hut, München. ISBN: 978-3-8439-3935-5.Google Scholar
Benninghoff, A., Drenckhahn, D. and Zenker, W. (2002), Anatomie 1. München, Jena, Urban & Fischer, Elsevier, Amsterdam.Google Scholar
Cohen, Y. H. and Reich, Y. (2016), Biomimetic Design Method for Innovation and Sustainability. Springer.Google Scholar
El Khoury, A., Lamiraux, F. and Taix, M. (2013), “Optimal Motion Planning for Humanoid Robots”, IEEE International Conference on Robotics and Automation (ICRA), May 2013, Karlsruhe, Germany, 2013.Google Scholar
Feldhusen, J. and Grote, (2013), Pahl/Beitz Konstruktionslehre: Methoden und Anwendung erfolgreicher Produktentwicklung. Springer Vieweg, Berlin, Heidelberg. ISBN 978-3-642-29568-3.Google Scholar
Feyerabend, F. (1991), Wertanalyse Gewicht: Methodische Gewichtsreduzierung am Beispiel von Industrierobotern. Fortschritt-Berichte der VDI Zeitschriften, VDI (Hrsg.), (Reihe 1, Nr. 201), 1991.Google Scholar
Fratzl-Zelman, N., Misof, B. M. and Roschger, P. (2011), “Das knochenmaterial: Ein nano-komposit aus mineral und kollagen”, Journal für Mineralstoffwechsel, 2011 Vol. 18 No. 3, pp. 110117, 2011.Google Scholar
Frost, H. M. (2003), “Bone's mechanostat: A 2003 update”, The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 2003 Vol. 275 No. 2, pp. 10811101, 2003.Google Scholar
Gößling, R., Herzog, M., Witzel, U. and Bender, B. (2014), “Compensation of bending moments as a nature-inspired design principle?”, In: Design 2014: Proceedings of the 13th International Design Conference, May 19-22, 2014, Dubrovnik - Croatia, pp. 193200.Google Scholar
Hill, B. (1997), Innovationsquelle Natur. Naturorientierte Innovationsstrategie für Entwickler, Konstrukteure und Designer. Shaker Verlag, Aachen.Google Scholar
Klug, S., Möhl, B., Stryk, O. V. and Barth, O. (2005), “Design and Application of a 3 DOF Bionic Robot Arm”, AMAM 2005, Illmenau, Germany, September 25-30, 2005, 2005.Google Scholar
Mattheck, C. (1997), Design in der Natur. Rombach GmbH + Co Verlagshaus KG, Freiburg, 1997.Google Scholar
Möhl, B. (2003), “A Composite Drive with Separate Control of Force and Position”, In: Proc.of the 11th International Conference on Advanced Robotics 2003 in Coimbra (ICAR 2003), pp. 16061610, 2003.Google Scholar
Mombaur, K., Koch, K. H. and Felis, M. L. (2014), “Model-based optimization for robotics. Journal of the Robotics Society of Japan”, Special Issue on Optimization Used in Robotics Research, Vol. 32 No. 2014.Google Scholar
Nachtigall, W. (2010), Bionik als Wissenschaft. Springer, Heidelberg, Dordrecht, London, New York. 2010.Google Scholar
Pauwels, F. (1965), Gesammelte Abhandlungen zur Funktionellen Anatomie des Bewegungsapparates. Springer-Verlag, Berlin, Heidelberg, New York. 1965.Google Scholar
Ruff, C., Holt, B. and Trinkaus, E. (2006), “Who's afraid of the big bad Wolff?: Wolff's law and bone functional adaptation”, American Journal of Physical Anthropology, Vol. 2006 No. 129, pp. 484498, 2006.Google Scholar
Uttich, E., Gößling, R., Bartz, M. and Bender, B. (2017), “Inversdynamische Berechnungen der Muskelkräfte am Glenohumeralgelenk unter der Prämisse der Biegeminimierung”, In: 35. CADFEM ANSYS Simulation Conference: die Fachkonferenz zur Numerischen Simulation in der Produktentwicklung, 15.-17. November 2017, Koblenz.Google Scholar
Uttich, E., Bartz, M. and Bender, B. (2018), “Review of the mechanisms of action in the musculoskeletal system as a basis for new simulation models”, 8th World Congress of Biomechanics, 8-12 July 2018, Dublin, Ireland, 2018.Google Scholar
VDI 6224-3 (2017), Bionik - Bionische Strukturoptimierung im Rahmen eines ganzheitlichen Produktentstehungsprozesses. Beuth-Verlag, Berlin, 2017.Google Scholar
Weber, W. (2017), Industrieroboter. Carl Hanser Verlag, München.Google Scholar
Witte, H., Fischer, M.S., Schilling, N., Ilg, W., Dillmann, R., Eckert, M. and Wittenburg, J. (2000), Konstruktion vierbeiniger Laufmaschinen anhand biologischer Vorbilder. Konstruktion 9-2000, pp. 4650, 2000.Google Scholar