Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-20T00:42:35.968Z Has data issue: false hasContentIssue false

Function-Based Material Selection for Cross-Component Lightweight Design Within the Extended Target Weighing Approach

Published online by Cambridge University Press:  26 July 2019

Sven Revfi*
Affiliation:
Karlsruhe Institute of Technology;
Jerome Kaspar
Affiliation:
Saarland University
Michael Vielhaber
Affiliation:
Saarland University
Albert Albers
Affiliation:
Karlsruhe Institute of Technology;
*
Contact: Revfi, Sven, Karlsruhe Institute of Technology, IPEK - Institute of Product Engineering, Germany, sven.revfi@kit.edu

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Shortening product development cycles while improving cost efficiency and quality epitomize a key challenge in today's competitive market environment. Integrated approaches simultaneously taking into account a conceptual design, material and processing definition methodologically facilitate the progress of promising product solutions most effectively. However, assorted approaches in the field of lightweight design as well as material selection mostly trying to cover alternative solutions on a component-specific level exclusively, yet.

Thus, this contribution outlines a cross-component material selection for function-based lightweight design within the Extended Target Weighing Approach covering the identification and evaluation of lightweight design potentials. The developed method is based on Ashby's material selection additionally taking into account project objectives for mass, costs and CO2 emissions in individual functional design spaces. Resulting in material combinations fitting to clearly stated project targets, the product engineer is already supported in an early phase of product development when initially assessing feasible materials for the overall system development.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2019

References

Albers, A., Bursac, N. and Wintergerst, E. (2015), “Produktgenerationsentwicklung - Bedeutung und Herausforderungen aus einer entwicklungsmethodischen Perspektive”, Stuttgarter Symposium für Produktentwicklung 2015, Stuttgart.Google Scholar
Albers, A., Moeser, G. and Revfi, S. (2018), “Synergy effects by using SysML models for the lightweight design method “extended target weighing approach”“, Procedia CIRP, Vol. 70, pp. 434439.Google Scholar
Albers, A., Revfi, S. and Spadinger, M. (2017), “Extended target weighing approach - Identification of lightweight design potential for new product generations”, Proceedings of the 21st International Conference on Engineering Design (ICED17), Vancouver, August 21-25, The Design Society, Glasgow, pp. 367376.Google Scholar
Albers, A., Revfi, S. and Spadinger, M. (2019), “Funktionsbasierte Entwicklung leichter Produkte”, In: Henning, F. and Moeller, E. (Eds.), Handbuch Leichtbau. Methoden, Werkstoffe, Fertigung. München, Carl Hanser Verlag. [in press].Google Scholar
Albers, A., Wagner, D., Ruckpaul, A., Hessenauer, B., Burkardt, N. and Matthiesen, S. (2013), “Target Weighing – A New Approach for Conceptual Lightweight Design in Early Phases of Complex Systems Development”, Proceedings of the 19th International Conference on Engineering Design (ICED 13), Seoul, August 19-22, The Design Society, Glasgow, pp. 301310.Google Scholar
Ashby, M.F., Brechet, Y.J.M., Cebon, D. and Salvo, L. (2004), “Selection strategies for materials and processes”, Materials & Design, Vol. 25, pp. 5167. https://doi.org/10.1016/S0261-3069(03)00159-6Google Scholar
Ashby, M.F. (2011), Materials Selection in Mechanical Design, Butterworth-Heinemann, Oxford. https://doi.org/10.1016/C2009-0-25539-5Google Scholar
Choudry, S.A., Kaspar, J., Alber, U. and Landgrebe, D. (2018), “Integration of an assessment methodology for the selection of joining technologies in lightweight engineering”, Procedia CIRP, Vol. 70, pp. 217222. https://doi.org/10.1016/j.procir.2018.02.034Google Scholar
Dieter, G.E. (1983), Engineering Design: A Materials and Processing Approach, Mc-Graw-Hill, New York.Google Scholar
Edwards, K.L. and Deng, Y.-M. (2007), “Supporting design decision-making when applying materials in combination”, Materials and Design, Vol. 28, pp. 12881297. https://doi.org/10.1016/j.matdes.2005.12.009Google Scholar
Ehrlenspiel, K. (2009), Integrierte Produktentwicklung. Denkabläufe, Methodeneinsatz, Zusammenarbeit. 4. Carl Hanser Verlag GmbH & Co. KG, Aufl. München. https://doi.org/10.3139/9783446421578Google Scholar
Farag, M.M. (2014), Materials and Process Selection for Engineering Design, CRC Press, Boca Raton (FL).Google Scholar
Feyerabend, F. (1991), Wertanalyse Gewicht: Methodische Gewichtsreduzierung - am Beispiel von Industrierobotern, Paderborn, Univ., Dissertation, 1991, VDI-Verl, DüsseldorfGoogle Scholar
Illgner, K.-H. (1979), “Werkstoffauswahl für den Konstrukteur”, In: Verein Deutscher Ingenieure, VDI-Z 121 No. 20 - Oktober (II), Verein Deutscher Ingenieure, VDI-Verlag, Dusseldorf.Google Scholar
Jato-Espino, D., Castillo-Lopez, E., Rodriguez-Hernandez, J. and Canteras-Jordana, J.C. (2014), “A review of application of multi-criteria decision making methods in construction”, Automation in Construction, Vol. 45, pp. 151162. https://doi.org/10.1016/j.autcon.2014.05.013Google Scholar
Kaspar, J. and Vielhaber, M. (2016), “Cross-Component Systematic Approach for Lightweight and Material-Oriented Design”, DS 85-1: Proceedings of NordDesign 2016, Vol. 1, pp. 332341.Google Scholar
Kaspar, J., Choudry, S.A., Landgrebe, D. and Vielhaber, M. (2018a), “Concurrent and geometry-dependent selection of material and joining technology - An initial utility-based systematic decision-making tool”, 2018 Annual IEEE International Systems Conference (SysCon), pp. 767774.Google Scholar
Kaspar, J., Choudry, S.A. and Vielhaber, M. (2018b), “Concurrent selection of material and joining technology - holistically relevant aspects and its mutual interrelations in lightweight engineering”, Procedia CIRP, Vol. 72, pp. 780785. https://doi.org/10.1016/j.procir.2018.03.093Google Scholar
Kaspar, J., Revfi, S., Albers, A. and Vielhaber, M. (2019), “Cross-component material and joining selection for functional lightweight design based on the extended target weighing approach - a detailed application example”, Procedia CIRP. (submitted paper under review)Google Scholar
Klein, B. (2013), Leichtbau-Konstruktion, Springer, Wiesbaden. https://doi.org/10.1007/978-3-8348-9965-1Google Scholar
Leichtbau, B.W. (2017), “Weniger ist mehr. Design.”, available at: https://www.leichtbau-bw.de/leichtbau/unsere-mission.html (accessed 27 November 2018)Google Scholar
Pahl, G. and Beitz, W. (1996), Engineering Design: A Systematic Approach, Springer, Berlin. https://doi.org/10.1007/978-1-4471-3581-4Google Scholar
Pasini, D. (2007), “Shape transformers for material and shape selection of lightweight beams”, Materials & Design, Vol. 28, pp. 20712079. https://doi.org/10.1016/j.matdes.2006.05.028Google Scholar
Ponn, J. and Lindemann, U. (2011), Konzeptentwicklung und Gestaltung technischer Produkte, Springer Berlin Heidelberg, Berlin, Heidelberg.Google Scholar
Posner, B., Binz, H. and Roth, D. (2013), “Operationalisation of the value analysis for design for lightweight: The function mass analysis”, Proceedings of the 19th International Conference on Engineering Design (ICED13), Seoul, August 19-22, 2013, The Design Society, Glasgow, pp. 271280.Google Scholar
Prüß, H., Stechert, C. and Vietor, T. (2010), “Methodik zur Auswahl von Fügetechnologien im Multimaterialsystemen”, In: Krause, D., Paetzold, K. and Wartzak, S., Design for X: Beiträge zum 21. DfX-Symposium, TuTech Verlag, Hamburg, pp. 131142.Google Scholar
Reuter, M. (2014), Methodik der Werkstoffauswahl: Der systematische Weg zum richtigen Material, Carl Hanser Verlag, Leipzig.Google Scholar
Revfi, S., Albers, A. and Stegmiller, M. (2018), “Target Weighing Approach: Study to evaluate the benefits of a methodical approach in comparison to classical company processes for the identification of lightweight design potentials”, DS 91: Proceedings of NordDesign 2018.Google Scholar
Sirisalee, P., Ashby, M.F., Parks, G.T. and Clarkson, P.J. (2004), “Multi-criteria material selection in engineering design”, Adv. Eng. Mater., Vol. 6 No. 1–2, pp. 8492. https://doi.org/10.1002/adem.200300554Google Scholar
Weaver, P.M. and Ashby, M.F. (1997), “Material limits for shape efficiency”, Progress in Materials Science, Vol. 41, pp. 61128. https://doi.org/10.1016/S0079-6425(97)00034-0Google Scholar