Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T00:22:31.428Z Has data issue: false hasContentIssue false

Method for Analysing Requirement Change Propagation based on a Modified Pagerank Algorithm

Published online by Cambridge University Press:  26 July 2019

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Complexity of products and systems is increasing through digitalization, interdisciplinarity as well as high technology maturity and new business models. In consequence, new product development (NPD) projects need to manage and satisfy a large number of requirements from a broad range of stakeholders. Yet, NPD projects are often delayed due to requirement changes. In this paper, a new method for analyzing requirement change propagation is presented. The method is based on the assessment of requirement interrelations structured in a requirements structure matrix by a modified page-rank algorithm. By the method, a high number of strongly interrelated requirements can be analyzed in an efficient manner. Additionally, higher-level interrelations as well as the relative weights of requirements are also incorporated in the analysis. Hereby, an efficient holistic approach towards the analysis of requirement change propagation is proposed.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2019

References

Albers, A., Heimicke, J., Hirschter, T., Richter, T., Reiß, N., Maier, A. and Bursac, N. (2018), “Managing Systems of Objectives in the agile Development of Mechatronic Systems by ASD – Agile Systems Design”, Linköping, Sweden, 14th - 17th August.Google Scholar
Brauns, C. (7 October 2016), Requirements Engineering und Management in der wehrtechnischen Beschaffung. Empirische Bestandsaufnahme, Konzeptentwicklung, Evaluation, Dissertation, Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg, Hamburg.Google Scholar
Brin, S. and Page, L. (1998), “The anatomy of a large-scale hypertextual Web search engine”, Computer Networks and ISDN Systems, Vol. 30 No. 1-7, pp. 107117.Google Scholar
Browning, T.R. (2001), “Applying the design structure matrix to system decomposition and integration problems: a review and new directions”, IEEE Transactions on Engineering Management, Vol. 48 No. 3, pp. 292306.Google Scholar
Bryan, K. and Leise, T. (2006), “The $25,000,000,000 Eigenvector. The Linear Algebra behind Google”, SIAM Review, Vol. 48 No. 3, pp. 569581.Google Scholar
Clarkson, P.J., Simons, C. and Eckert, C. (2004), “Predicting Change Propagation in Complex Design”, Journal of Mechanical Design, Vol. 126 No. 5, p. 788.Google Scholar
Dahlstedt, ÅG and Persson, A. (2005), “Requirements Interdependencies: State of the Art and Future Challenges”, In: Aurum, A. and Wohlin, C. (Ed.), Engineering and Managing Software Requirements, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, pp. 95116.Google Scholar
Eben, K.G.M. and Lindemann, U. (2010), Structural Analysis of Requirements. Interpretation of structural criterions, Cambridge.Google Scholar
Eppinger, S.D. and Browning, T.R. (2012), Design structure matrix methods and applications, Engineering systems.Google Scholar
Fu, H.-H., Lin, D.K.J. and Tsai, H.-T. (2006), “Damping factor in Google page ranking”, Applied Stochastic Models in Business and Industry, Vol. 22 No. 5-6, pp. 431444.Google Scholar
Gräßler, I. and Hentze, J. (2017), “Structuring and Describing Requirements in a Flexible Mesh for Development of Smart Interdisciplinary Systems”, In: Araujo, A. and Mota Soares, C.A. (Ed.), Smart Structures and Materials, Springer International Publishing, Basel, pp. 16221631.Google Scholar
Gräßler, I., Oleff, C. and Scholle, P. (2018a), “Methode zur Bewertung von Anforderungsänderungen additiv gefertigter Produkte”, In: Krause, D., Paetzold, K. and Wartzack, S. (Ed.), Design for X: Beiträge zum 29. DfX-Symposium, Tutzing, 25./26. September 2018, TuTech Innovation, Hamburg, pp. 333344.Google Scholar
Gräßler, I., Scholle, P., Hentze, J. and Oleff, C. (2018b), “Semi-Automatized Assessment of Requirement Interrelations”, paper presented at DESIGN Conference, Dubrovnik, 21.-24.05.2018, Available at: https://doi.org/10.21278/idc.2018.0298Google Scholar
Gräßler, I., Scholle, P. and Pottebaum, J. (2017), “Integrated process and data model for applying scenario-technique in requirements engineering”, In: Design Society, (Ed.), ICED17: 21st International Conference on Engineering Design Vancouver, 21.-25.08.2017, Design Society, pp. 261270.Google Scholar
Gupta, R.K., Belkadi, F., Buergy, C., Bitte, F., Da Cunha, C., Buergin, J., Lanza, G. and Bernard, A. (2018), “Gathering, evaluating and managing customer feedback during aircraft production”, Computers & Industrial Engineering, Vol. 115, pp. 559572. http://doi.org/10.1016/j.cie.2017.12.012Google Scholar
Jochem, R. and Landgraf, K. (Eds.) (2011), Anforderungsmanagement in der Produktentwicklung: Komplexität reduzieren, Prozesse optimieren, Qualität sichern, 1, Auflage, Symposion Publishing GmbH, Düsseldorf.Google Scholar
Krusche, T. (2000), Strukturierung von Anforderungen für eine effiziente und effektive Produktentwicklung, Zugl.: Braunschweig, Techn. Univ., Diss., 2000, Bericht / Institut für Konstruktionslehre, Maschinen- und Feinwerkelemente. Technische Universität Braunschweig, Vol. 60, 1. Aufl., Mainz, Aachen.Google Scholar
Pahl, G., Beitz, W., Feldhusen, J. and Grote, K.-H. (2007), Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung ; Methoden und Anwendung, 7, Aufl., Springer, Berlin, Heidelberg.Google Scholar
Pohl, K. (1996), Process-centered requirements engineering, Advanced software development series, Vol. 5, Research Studies Press, Taunton.Google Scholar
Pohl, K. (2010), Requirements engineering: Fundamentals, principles, and techniques, Springer, New York.Google Scholar
Pohl, K. and Rupp, C. (2015), Basiswissen Requirements Engineering: Aus- und Weiterbildung nach IREB-Standard zum Certified Professional for Requirements Engineering foundation level nach IREB-Standard, 4, überarbeitete Auflage, dpunkt, Heidelberg.Google Scholar
Robinson, W.N., Pawlowski, S.D. and Volkov, V. (2003), “Requirements interaction management”, ACM Computing Surveys, Vol. 35 No. 2, pp. 132190.Google Scholar
Rupp, C. (2009), Requirements-Engineering und -Management: Professionelle, iterative Anforderungsanalyse für die Praxis, 5., aktualisierte und erw. Aufl., Hanser, München.Google Scholar
Rupp, C. (2014), Requirements-Engineering und -Management: Aus der Praxis von klassisch bis agil, 6., aktualisierte und erweiterte Auflage, Hanser, München.Google Scholar
SE Handbook Working Group (INCOSE) (2014), Systems Engineering Handbook: A Guide for System Life Cycle Processes And Activities, San Diego.Google Scholar
Song, Y.-W., Chahin, A., Scholle, P., Bender, B., Gräßler, I. and Paetzold, K. (2017), “Optimierung des Produktentwicklungsprozesses mittels Risikoanalyse vernetzter Anforderungen”, In: Krause, D., Paetzold, K. and Wartzack, S. (Ed.), Design for X: Beiträge zum 28. DfX-Symposium, Oktober 2017, TuTech Innovation, Hamburg, pp. 339351.Google Scholar
Weber, C. and Deubel, T. (2003), New theory-based concepts for PDM and PLM, Universität des Saarlandes.Google Scholar
Xing, W. and Ghorbani, A. (2004), “Weighted PageRank algorithm”, Proceedings. Second Annual Conference on Communication Networks and Services Research, 2004, Fredericton, NB, Canada, 21.05.2004 - 21.05.2004, IEEE, pp. 305314.Google Scholar