Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-11T08:26:02.612Z Has data issue: false hasContentIssue false

Purpose-Oriented Modelling of the Learning Process When Using Prototypes

Published online by Cambridge University Press:  26 July 2019

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Prototypes are often used as a tool in the product development process and their usage is advised in many guidelines, frameworks and product development methods. Those prototypes achieve different goals of which most relate to getting new insights and information about the product in development. For the development of those prototypes however, significantly less development methods are available compared to the number of methods for the development of products. Investigating the process of using a prototype leads to the idea that the main purpose of those prototypes is describable as learning about the product. This idea is elaborated further and followed by the introduction of the detailed process model for prototyping which is primarily based on the detailed process model for products. However, the purpose of the prototype differs from the purpose of the product which leads to some significant changes of the model. To give an example of a prototyping process, the development of a sensor- integrating elastic claw coupling is introduced and analysed. In addition, this paper discusses the question, how other product development models may be applied to the development of prototypes.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2019

References

Birkhofer, H., Anderl, R., Franke, H.-J., Großmann, J. and Pfouga, A. (2007), “Life Cycle Engineering”, in Krause, F.-L. (Ed.), Innovationspotenziale in der Produktentwicklung, Hanser, München, pp. 205215.Google Scholar
Blessing, L. and Chakrabarti, A. (2009), DRM, a Design Research Methodology, Springer London, London.Google Scholar
Boehmer, A., Richter, C., Hostettler, R., Schneider, P., Plum, I., Böhler, D., Lindemann, U., Conradt, J. and Knoll, A. (2016), “Think.Make.Start. - An Agile Framework”, in Marjanović, D., Štorga, M., Pavković, N., Bojčetić, N. and Škec, S. (Eds.), Proceedings of the DESIGN 2016 14th International Design Conference, pp. 917926.Google Scholar
Bursac, N., Rapp, S., Albers, A., Breitschuh, J. and Tanaiutchawoot, N. (2017), “Entscheidungsheuristiken in der PGE - Produktgenerationsentwicklung”, in Krause, D., Paetzold, K. and Wartzack, S. (Eds.), DFX 2017: Proceedings of the 28th Symposium Design for X, pp. 275286.Google Scholar
Camburn, B., Dunlap, B., Viswanathan, V., Linsey, J., Jensen, D. and Crawford, D. (2013), Connecting Design Problem Characteristics to Prototyping Choices to Form a Prototyping Strategy, ASEE Annual Conference, Atlanta.Google Scholar
Camburn, B., Viswanathan, V., Linsey, J., Anderson, D., Jensen, D., Crawford, R., Otto, K. and Wood, K. (2017), “Design prototyping methods. State of the art in strategies, techniques, and guidelines”, Design Science, Vol. 3, p. 63.Google Scholar
Deininger, M., Daly, S., Sienko, K., Lee, J., Obed, S. and Effah Kaufmann, E. (2017), “Does Prototype Format Influence Stakeholder Design Input?”, in Maier, A., Škec, S., Kim, H., Kokkolaras, M., Oehmen, J., Fadel, G., Salustri, F. and van der Loos, M. (Eds.), Proceedings of the 21st International Conference on Engineering Design: VOLUME 6: Design Information and Knowledge, The Design Society, Glasgow, pp. 553562.Google Scholar
Hallmann, M., Kunz, D., Schleich, B. and Wartzack, S. (2018), “Analyse anlagenspezifischer Fertigungseinflüsse auf die Genauigkeit FDM-gedruckter Bauteile”, in Krause, D., Paetzold, K. and Wartzack, S. (Eds.), DFX 2018: 29th Symposium on Design for X.Google Scholar
Heidemann, B. (2001), “Trennende Verknüpfung: Ein Prozessmodell als Quelle für Produktideen”, Zugl.: Darmstadt, Techn. Univ., Diss., 2001, Fortschritt-Berichte VDI Reihe 1, Konstruktionstechnik, Maschinenelemente, Vol. 351, Als Ms. gedr, VDI-Verl., Düsseldorf.Google Scholar
Leifer, L. and Steinert, M. (2014), “Dancing with ambiguity: Causality behavior, design thinking, and triple-loop-learning”, in Gassmann, O. and Schweitzer, F. (Eds.), Management of the fuzzy front end of innovation, Springer International Publishing, Cham, pp. 141158.Google Scholar
Martin, G., Schork, S., Vogel, S. and Kirchner, E. (2018), “MME – Potentiale durch mechatronische Maschinenelemente”, Konstruktion, No. 01-02/2018, pp. 7175.Google Scholar
Matthiesen, S., Gwosch, T., Mangold, S., Grauberger, P., Steck, M. and Cersowsky, S. (2017), “Frontloading in der Produktentwicklung von Power-Tools durch frühe Validierung mit Hilfe von leistungsskalierten Prototypen”, in Binz, H., Bertsche, B., Bauer, W., Spath, D. and Roth, D. (Eds.), Stuttgarter Symposium für Produktentwicklung SSP 2017: Stuttgart, 29. Juni 2017, Wissenschaftliche Konferenz, Universität Stuttgart.Google Scholar
Matthiesen, S., Gwosch, T., Schäfer, T., Dültgen, P., Pelshenke, C. and Gittel, H.-J. (2016), “Experimentelle Ermittlung von Bauteilbelastungen eines Power Tool Antriebsstrangs durch indirektes Messen in realitätsnahen Anwendungen als ein Baustein in der Teilsystemvalidierung”, Forschung im Ingenieurwesen, Vol. 80 No. 1-2, pp. 1727.Google Scholar
Menold, J., Jablokow, K. and Simpson, T. (2018), “The Prototype for X Framework. Assessing Impact on Self-Reported Prototyping Behavior of Student Designers”, Journal of Mechanical Design.Google Scholar
Schork, S., Gramlich, S. and Kirchner, E. (2016), “Entwicklung von Smart Machine Elements - Ansatz einer smarten Ausgleichskupplung”, in Krause, D., Paetzold, K. and Wartzack, S. (Eds.), Design for X - Beiträge zum 27. DfX-Symposium Oktober 2016, TuTech Verlag TuTech Innovation GmbH , Hamburg, pp. 181192.Google Scholar
Schork, S. and Kirchner, E. (2018a), “Defining Requirements in Prototyping: The Holistic Prototype and Process Development”, in Ekströmer, P., Schütte, S. and Ölvander, J. (Eds.), Proceedings of NordDesign 2018, NordDESIGN.Google Scholar
Schork, S. and Kirchner, E. (2018b), “Method for the Development of Early Prototypes of Mechatronic Machine Elements Based on their Crititcal Properties”, in Marjanović, D., Štorga, M., Škec, S., Bojčetić, N. and Pavković, N. (Eds.), DS92: Proceedings of the DESIGN 2018 15th International Design Conference, essentials, pp. 13251336.Google Scholar
Ulrich, K.-T. and Eppinger, S.-D. (1995), Product design and development, International eds, McGraw-Hill, New York.Google Scholar