Skip to main content Accessibility help
×
Home

Reverse Engineered Design Automation: Applying Knowledge Based Engineering Techniques to a Case of Automotive Fixtures Design Configuration

  • Christian Johansson (a1)

Abstract

In the production of automotive body components, fixtures are an important part of the ongoing work on geometrical assurance. The fixture is uniquely defined for each component, and the design and configuration of these are time-consuming and takes a lot of effort. The objective with this paper is to explore the use of a design automation approach and application to semi-automate the configuration process of the fixture product. The paper presents an approach to automate the configuration of the fixtures in a flexible way, by reverse engineering the configuration of the fixture product from a generic blueprint that represents the expected outcome of the process, using a knowledge-based engineering approach applied to a computer aided design (CAD) environment. A reverse-engineered design automation toolbox for a CAD-software is developed. The toolbox is developed to lead a user through the configuration process, in the way that the experts want it done, end-to-end, making use of some unconventional solutions from a design automation perspective.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Reverse Engineered Design Automation: Applying Knowledge Based Engineering Techniques to a Case of Automotive Fixtures Design Configuration
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Reverse Engineered Design Automation: Applying Knowledge Based Engineering Techniques to a Case of Automotive Fixtures Design Configuration
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Reverse Engineered Design Automation: Applying Knowledge Based Engineering Techniques to a Case of Automotive Fixtures Design Configuration
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

Corresponding author

Contact: Johansson, Christian, Blekinge Institute of Technology, Mechanical Engineering, Sweden, christian.m.johansson@bth.se

References

Hide All
Alonso-Rasgado, T., Thompson, G. and Elfström, B.-O. (2004), “The design of functional (total care) products”, Journal of Engineering Design, Vol. 15 No. 6, pp. 515540. https://doi.org/10.1080/09544820412331271176.
Bertoni, M., Johansson, C. and Bertoni, A. (2015), “Knowledge enabled engineering”.
Blessing, L. T. M. and Chakrabarti, A. (2009), “DRM, a design research methodology”, DRM, a Design Research Methodology. https://doi.org/10.1007/978-1-84882-587-1.
Calkins Egging, N.B. and Scholz, C.B D. E. (2000), “Knowledge-Based Engineering (KBE) Design Methodology at the Undergraduate and Graduate Levels”, International Journal of Engineering Education, Vol. 16 No. 1, pp. 2138. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-0034399807&partnerID=40&md5=defac65000c96652c084c72408e394e5.
Cederfeldt, M. and Elgh, F. (2005), “Design Automation in SMEs-Current State, Potential, Need and Requirements”, in Inte, pp. 115. Available at: http://search.informit.com.au/documentSummary;dn=390095181685561;res=IELENG.
Chen, N. (2006), Convention over Configuration.
Chikofsky, E. J. and Cross, J. H II. (1990), “Reverse Engineering and Design Recovery: A Taxonomy”, IEEE Software, pp. 1317. https://doi.org/10.1109/52.43044.
Motavalli, S. (1998), “Review of reverse engineering approaches”, Computers & Industrial Engineering, Vol. 35 No. 1–2, pp. 2528. https://doi.org/10.1016/S0360-8352(98)00011-4.
Rekoff, M. G. Jr. (1985), “On Reverse Engineering”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-15 No. 2, pp. 244252.
Rocca, G. La (2012), “Knowledge based engineering: Between AI and CAD. Review of a language based technology to support engineering design”, Advanced Engineering Informatics. Elsevier Ltd, Vol. 26 No. 2, pp. 159179. https://doi.org/10.1016/j.aei.2012.02.002.
Stokes, M. (2001), “Managing engineering knowledge: MOKA: methodology for knowledge based engineering applications”, Professional Engineering Publishing Limited, London, UK.
Ullman, D. G. (2010), The Mechanical Design Process, Mechanics of Materials.
Vadoudi, K. (2012), “Proposal of a knowledge-based engineering methodology for mass customization”, (July 2013), pp. 287294.
Verhagen, W. J. C. C., et al. (2012), “A critical review of Knowledge-Based Engineering: An identification of research challenges”, Advanced Engineering Informatics. Elsevier Ltd, Vol. 26 No. 1, pp. 515. https://doi.org/10.1016/j.aei.2011.06.004.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed