Skip to main content Accessibility help

Roadmap to Consider Physiological and Psychological Aspects of User-product Interactions in Virtual Product Engineering

  • Sandro Wartzack (a1), Tina Schröppel (a1), Alexander Wolf (a1) and Jörg Miehling (a1)


To successfully facilitate user-centred design, a multitude of different aspects has to be considered, from purely physiological to psychological-emotional factors. The overall aim is to increase the customer satisfaction by enhancing the fit between products and their users in the respective context of use. Further virtualisation of user-centred design processes holds the potential to convey the concepts of frontloading and predictive engineering from classical product engineering. Our vision is to facilitate a comprehensive consideration of user-product interactions in virtual product engineering operationalised by the mission to develop methods and tools to assess and design user-product interactions according to physiological and psychological aspects. A variety of work has already been done to model musculoskeletal user groups, to configure, predict, simulate and optimise physical user-product interactions, to integrate such models into CAD or to map individual subjective values to product design. Nevertheless, there are still research areas to be addressed to enable a comprehensive implementation of the mentioned approach. These are discussed in the present contribution.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Roadmap to Consider Physiological and Psychological Aspects of User-product Interactions in Virtual Product Engineering
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Roadmap to Consider Physiological and Psychological Aspects of User-product Interactions in Virtual Product Engineering
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Roadmap to Consider Physiological and Psychological Aspects of User-product Interactions in Virtual Product Engineering
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

Corresponding author

Contact: Miehling, Jörg, Friedrich-Alexander-Universität Erlangen-Nürnberg, Engineering Design, Germany,


Hide All
Ackermann, M. and van den Bogert, A.J. (2010), “Optimality principles for model-based prediction of human gait”, Journal of biomechanics, Vol. 43 No. 6, pp. 10551060.
Akao, Y. 1990), Quality function deployment: Integrating customer requirements into product design, Productivity Press, Cambridge, Mass.
Ansorge, U. and Leder, H. (2017), Wahrnehmung und Aufmerksamkeit, Springer, Wiesbaden.
Bichler, R.J. (2015), Biomechanik und Fahrzeugentwicklung: Erstellung und Anwendung eines Modells zur virtuellen Beurteilung des Ein- und Ausstiegs, Zugl.: München, Techn. Univ., Diss., 2015, Reihe Sportwissenschaften, Vol. 16, 1. Aufl., Sierke, Göttingen.
Bubb, H. (2015), Automobilergonomie, ATZ / MTZ-Fachbuch, Springer Vieweg, Wiesbaden.
Damsgaard, M., Rasmussen, J., Christensen, S.T., Surma, E. and Zee, M.d. (2006), “Analysis of musculoskeletal systems in the AnyBody Modeling System”, Simulation Modelling Practice and Theory, Vol. 14 No. 8, pp. 11001111.
Enders, A. (2013), Informationsintegration bei der Produktbeurteilung: Eine empirische Studie unter besonderer Berücksichtigung der Produktvertrautheit und des Produktinvolvements, Springer, Heidelberg.
Farahani, S.D., Andersen, M.S., de Zee, M. and Rasmussen, J. (2016), “Optimization-based dynamic prediction of kinematic and kinetic patterns for a human vertical jump from a squatting position”, Multibody System Dynamics, Vol. 36 No. 1, pp. 3765.
Fenko, A., Schifferstein, H.N.J. and Hekkert, P. (2010), “Shifts in sensory dominance between various stages of user-product interactions”, Applied Ergonomics, Vol. 41 No. 1, pp. 3440.
Fluit, R., Andersen, M.S., Kolk, S., Verdonschot, N. and Koopman, H.F.J.M. (2014), “Prediction of ground reaction forces and moments during various activities of daily living”, Journal of biomechanics, Vol. 47 No. 10, pp. 23212329.
Freudenthal, A. (1999), The design of home appliances for young and old consumers, Series ageing and ergonomics, Vol. 2, Delft University of Technology, Delft.
Gibson, J.J. (1979), The Ecological Approach to Visual Perception: Classic Edition, Psychology Press & Routledge Classic Editions, Taylor and Francis, Hoboken.
Glende, S. (2010), Entwicklung eines Konzepts zur nutzergerechten Produktentwicklung mit Fokus auf die “Generation Plus”, Dissertation, Fakultät für Verkehrs- und Maschinenwesen, Technische Universität Berlin, Berlin.
Gößling, R., Eicker, H., Bartz, M. and Bender, B. (2014), “Biomechanische Betrachtungen der Berechnung von Kräften mit Menschmodellen”, Beiträge zum 25. Symposium Design for X, TuTech, Hamburg, pp. 110120.
Gould, J.D. and Lewis, C. (1985), “Designing for usability. Key principles and what designers think”, Communications of the ACM, Vol. 28 No. 3, pp. 300311.
Hammer, N. (1992), Möglichkeiten und Grenzen der Überprüfung von Designprodukten durch Okulometrie, Die Blaue Eule, Essen.
Hassenzahl, M., Burmester, M. and Koller, F. (2003), “AttrakDiff. Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität”, In: Szwillus, G. and Ziegler, J., 57, Mensch & Computer 2003: Interaktion in Bewegung, Teubner, Stuttgart, pp. 187196.
Holden, D., Saito, J. and Komura, T. (2016), “A deep learning framework for character motion synthesis and editing”, ACM Transactions on Graphics, Vol. 35 No. 4, pp. 111.
Iwamoto, M., Kisanuki, Y., Watanabe, I., Furusu, K. and Miki, K. (2002), “Development of a finite element model of the total human model for safety (THUMS) and application to injury reconstruction”, International Research Council on Biomechanics of Injury.
Kano, N. (1984), “Attractive Quality and Must-Be Quality”, J. Jpn. Soc. Quality Control, Vol. 14, pp. 3948.
Kapandji, A.I. and Koebke, J. (2009), Funktionelle Anatomie der Gelenke: Schematisierte und kommentierte Zeichnungen zur menschlichen Biomechanik ; [einbändige Ausgabe: obere Extremität, untere Extremität, Rumpf und Wirbelsäule], 5., [unveränd.] Aufl., Thieme, Stuttgart.
Kroeber-Riel, W., Weinberg, P. and Gröppel-Klein, A. (2009), Konsumentenverhalten, 9th ed., Vahlen, München.
Krüger, D. and Wartzack, S. (2014), “Towards CAD integrated Simulation of Use under Ergonomic Aspects”, Proceedings of the International Design Conference - DESIGN 2014, pp. 20952104.
Krüger, D. and Wartzack, S. (2017), “A contact model to simulate human-artifact interaction based on force optimization. Implementation and application to the analysis of a training machine”, Computer methods in biomechanics and biomedical engineering, Vol. 20 No. 15, pp. 110.
Kukkonen, S. (2005), Exploring Eye-Tracking in Design Evaluation, 25.-28.11.2005.
McCrae, R.R. and Costa, P.T.J. (1996), “Toward a new generation of personality theories: Theoretical contexts for the five-factor model”, In: Wiggins, J.S. (Ed.), The five-factor model of personality: Theoretical perspectives, Guilford Press, New York, pp. 5187.
Miehling, J. (2018), Berücksichtigung biomechanischer Zusammenhänge in der nutzergruppenspezifischen virtuellen Produktentwicklung, Fortschritt-Berichte VDI. Reihe 1, Konstruktionstechnik/ Maschinenelemente, Nr. 445, VDI Verlag, Düsseldorf.
Miehling, J., Geißler, B. and Wartzack, S. (2013), “Towards Biomechanical Digital Human Modeling of Elderly People for Simulations in Virtual Product Development”, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 57 No. 1, pp. 813817.
Miehling, J., Schuhhardt, J., Paulus-Rohmer, F. and Wartzack, S. (2015), “Computer Aided Ergonomics Through Parametric Biomechanical Simulation”, Volume 1B: 35th Computers and Information in Engineering Conference, Boston, Massachusetts, USA, Sunday 2 August 2015, ASME. V01BT02A016.
Miehling, J. and Wartzack, S., “Strength Mapping Algorithm (SMA) for Biomechanical Human Modelling using Empirical Population Data”, Proceedings of the 20th International Conference on Engineering Design (ICED15), Vol. 10: Design Information and Knowledge Management, pp. 115124.
Miehling, J., Wolf, A. and Wartzack, S. (2018), “Musculoskeletal Simulation and Evaluation of Support System Designs”, In: Karafillidis, A. and Weidner, R. (Ed.), Developing Support Technologies: Integrating Multiple Perspectives to Create Assistance that People Really Want, Biosystems & Biorobotics, Springer International Publishing, Cham, pp. 219227.
Nagamachi, M. and Lokman, A.M. (2011), Innovations of Kansei engineering, CRC Taylor & Francis, Boca Raton.
Norman, D.A. (2013), The design of everyday things, Revised and expanded edition, Basic Books, New York, NY.
Pankoke, S. and Siefert, A. (2007), “Virtual Simulation of Static and Dynamic Seating Comfort in the Development Process of Automobiles and Automotive Seats. Application of Finite-Element-Occupant-Model CASIMIR”, JUN. 12, 2007, SAE International400 Commonwealth Drive, Warrendale, PA, United States.
Peng, X.B., Abbeel, P., Levine, S. and van de Panne, M. (2018), “DeepMimic. Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills”, ACM Transactions on Graphics, Vol. 37 No. 4, pp. 114.
Rasmussen, J. (2005), “Musculoskeletal Simulation – (Dis)comfort Evaluation”, S&V OBSERVER, pp. 89.
Schröppel, T., Miehling, J. and Wartzack, S. (2019a), Roadmap für die Entwicklung einer Methodik zur dualen Nutzerintegration, Stuttgarter Symposium für Produktentwicklung, 16.05.2019, Stuttgart. accepted Paper.
Schröppel, T., Miehling, J. and Wartzack, S. (2019b), Konzept zur Identifikation relevanter Produkteigenschaften zur Unterstützung einer positiven User Experience, Entwerfen Entwickeln Erleben, 27.-28.06.2019, Dresden. accepted Paper.
Schröppel, T. and Wartzack, S. (2018), “Making a difference: Integrating physiological and psychological needs in user description”, In: Ekströmer, P., Schütte, Simon and Ölvander, Johan (Ed.), Proceedings of NordDesign 2018, Linköping, Sweden, 14th - 17th August 2018, LiU Tryck, Linköping, pp. 110.
Seeger, H. (2005), Design technischer Produkte, Produktprogramme und -systeme, Springer, Berlin.
Seth, A., Hicks, J.L., Uchida, T.K., Habib, A., Dembia, C.L., Dunne, J.J., Ong, C.F., DeMers, M.S., Rajagopal, A., Millard, M., Hamner, S.R., Arnold, E.M., Yong, J.R., Lakshmikanth, S.K., Sherman, M.A., Ku, J.P. and Delp, S.L. (2018), “OpenSim. Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement”, PLoS computational biology, Vol. 14 No. 7, pp. e1006223.
Thomke, S. (2000), “The effect of “front-loading” problem-solving on product development performance”, Journal of Product Innovation Management, Vol. 17 No. 2, pp. 128142.
Vajna, S. (2014), Integrated Design Engineering: Ein interdisziplinäres Modell für die ganzheitliche Produktentwicklung, Springer, Berlin Heidelberg.
Wartzack, S. (2001), Predictive Engineering - Assistenzsystem zur multikriteriellen Analyse alternativer Produktkonzepte, Zugl.: Erlangen-Nürnberg, Univ., Diss., 2000, Dissertation. Fortschritt-Berichte VDI Reihe 1 Nr. 336, VDI-Verlag, Düsseldorf.
Wolf, A., Binder, N., Miehling, J. and Wartzack, S. (2019a), “Towards virtual assessment of human factors: A concept for data driven prediction and analysis of physical user-product interactions”, 22nd International Conference on Engineering Design, Delft, 05.-08.08.2019, accepted Paper.
Wolf, A., Krüger, D., Miehling, J. and Wartzack, S. (2019b), “Approaching an ergonomic future: An affordance-based interaction concept for digital human models”, 29th CIRP Design Conference, Póvoa de Varzim, 08.-10.05.2019, accepted Paper.
Wolf, A. and Wartzack, S. (2018), “Parametric movement synthesis. Towards virtual design optimistaion of man-machine interaction in engineering design”, In: Marjanović, D., Štorga, M., Škec, S., Bojčetić, N. and Pavković, N. (Ed.), Design 2018: Proceedings of the 15th International Design Conference, May 2018, Dubrovnik, Croatia, May, 21-24, 2018, Fac. of Mechanical Engineering and Naval Architecture Univ, Zagreb, pp. 941952.
Zöller, S.G. and Wartzack, S. (2017), “Considering Users’ Emotions in Product Development Processes and the Need to Design for Attitudes”, in Fukuda, S. (Ed.), Emotional Engineering, 5th ed., Springer International Publishing, Cham, pp. 6997.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed