Published online by Cambridge University Press: 24 July 2014
In this paper we deal with two non-local operators that are both well known and widely studied in the literature in connection with elliptic problems of fractional type. More precisely, for a fixed s ∈ (0,1) we consider the integral definition of the fractional Laplacian given by
where c(n, s) is a positive normalizing constant, and another fractional operator obtained via a spectral definition, that is,
where ei, λi are the eigenfunctions and the eigenvalues of the Laplace operator −Δ in Ω with homogeneous Dirichlet boundary data, while ai represents the projection of u on the direction ei.
The aim of this paper is to compare these two operators, with particular reference to their spectrum, in order to emphasize their differences.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.