Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-vvt5l Total loading time: 0.301 Render date: 2022-06-30T02:54:15.071Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions

Published online by Cambridge University Press:  14 February 2012

Charles T. Fulton
Affiliation:
Department of Mathematics, The Pennsylvania State University

Synopsis

In this paper it is shown that the analysis of Titchmarsh's book [32] for regular Sturm-Liouville problems on a finite closed interval carries over readily to regular problems involving the eigenvalue parameter in the boundary condition at one end-point. The manner in which this type of problem is associated with a self-adjoint operator in Hilbert space has recently been pointed out by Walter in [36], and his operator-theoretic formulation is adopted here. The use of the eigenfunction expansion is illustrated by applying it to solve a heat-conduction problem for a solid in contact with a fluid.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bauer, W. F.. Modified Sturm-Liouville systems. Quart. Appl. Math. 11 (1953), 273282.CrossRefGoogle Scholar
2Bauer, W. F.. Modified Sturm-Liouville problems and associated integral transforms (Univ. of Michigan: Thesis, 1951).Google Scholar
3Churchill, R. V.. Operational mathematics in Engineering (3rd edn) (New York: McGraw-Hill, 1972).Google Scholar
4Cohen, D. S.. An integral transform associated with boundary conditions containing an eigenvalue parameter. SIAMJ. Appl. Math. 14 (1966), 11641175.CrossRefGoogle Scholar
5Courant, R.. Über die Anwendung der Variationsrechnung in der theorie der Eigenschwingungen und über neue Klassen von Funktionalgleichungen. Acta Math. 49 (1926), 168.CrossRefGoogle Scholar
6Davies, R.. Expansions in series of non-orthogonal eigenfunctions. Indust. Math. 4 (1953), 916.Google Scholar
7Duhamel, J. M. C.. Mémoire sur les vibrations d'une corde flexible, chargée d'un ou de plusieurs. curseurs. J. Étcole Polytechnique 29 (1843), 136.Google Scholar
8Dunford, N. and Schwartz, J. T.. Linear operators 11 (New York: Interscience, 1963).Google Scholar
9Evans, W. D.. A non-selfadjoint differential operator in L σ2 [a, b). Quart. J. Math. Oxford Ser. 21 (1970), 371383.CrossRefGoogle Scholar
10Feller, W.. The parabolic differential equations and the associated semi-groups of transforms. Ann. of Math. 55 (1952), 468519.CrossRefGoogle Scholar
11Feller, W.. Generalized second-order differential operators and their lateral conditions. Illinois J. Math. 1 (1957), 459504.Google Scholar
12Friedman, B.. Principles and techniques of applied mathematics (New York: Wiley, 1956).Google Scholar
13Gaskell, R. E.. A problem in heat conduction and an expansion theorem. Amer. J. Math. 64 (1942), 447455.CrossRefGoogle Scholar
14Greco, D.. Gli sviluppi in serie di autosoluzioni in un problema ai limiti relativo ad un equazione differentiale lineare del secondo ordine. Giorn. Mat. Battaglini 79 (1949), 86120.Google Scholar
15Haar, A.. Zur theorie der orthogonalen Funktionensysteme. Math. Ann. 69 (1912), 331371.CrossRefGoogle Scholar
16Hellwig, G.. Über die Anwendung der Laplace-Transformation auf Randwertprobleme. Math. Z. 66 (1957), 371388.CrossRefGoogle Scholar
17Hille, E.. Note on the preceding paper of Mr Peek. Ann. of Math. 30 (1929), 270271.CrossRefGoogle Scholar
18Jakob, M.. Heat transfer (New York: Wiley, 1949).Google Scholar
19Kneser, A.. Belastete Integralgleichungen. Rend. Circ. Mat. Palermo 37 (1914), 169197.CrossRefGoogle Scholar
20Langer, R. E.. A problem in diffusion or in the flow of heat for a solid in contact with a fluid. Tohoku Math. J. 35 (1932), 360375.Google Scholar
21Rayleigh, Lord. The theory of sound 1 (London: Macmillan, 1894).Google Scholar
22Morgan, G. W.. Some remarks on a class of eigenvalue problems with special boundary conditions. Quart. Appl. Math. 11 (1953), 157165.CrossRefGoogle Scholar
23Peddie, W.. Note on the cooling of a sphere in a mass of well stirred liquid. Proc. Edinburgh Math. Soc. 19 (1901), 3435.CrossRefGoogle Scholar
24Peek, R. L. Jr, Solutions to a problem in diffusion employing a non-orthogonal sine series. Ann. of Math. 30 (1929), 265269.CrossRefGoogle Scholar
25Poisson, S. D.. Mémoire sur la Manière d'exprimer les Fonctions par des Séries de quantités périodiques, et sur l'Usage de cette Transformation dans la Resolution de differens Problèmes. J. École Polytechnique 18 (1820), 417489.Google Scholar
26Schäfke, F. W. and Schneider, A.. S-hermitesche Rand-eigenwertprobleme I, II, III. Math. Ann. 162 (1966), 926; 165 (1966), 236–260; 177 (1968), 67–94.CrossRefGoogle Scholar
27Schneider, A.. Zur Einordnung selbstadjungierter Rand-eigenwertprobleme bei gewöhnlichen differentialgleichungen in die theorie S-hermitescher Rand-eigenwertprobleme. Math. Ann. 178 (1968), 277294.CrossRefGoogle Scholar
28Schneider, A.. A note on eigenvalue problems with eigenvalue parameter in the boundary conditions. Math. Z. 136 (1974), 163167.CrossRefGoogle Scholar
29Tamarkin, J. D.. Some general problems of the theory of ordinary linear differential equations and expansions of an arbitrary function in series of fundamental functions. Math. Z. 27 (1928), 154.CrossRefGoogle Scholar
30Timoshenko, S. and Young, D. H.. Vibration problems in engineering (3rd edn) (Princeton: Van Nostrand, 1955).Google Scholar
31Timoshenko, S.. Erzwungene Schwingungen prismatischer Stäbe. Z. Math. Physik. 59 (1911), 163203.Google Scholar
32Titchmarsh, E. C.. Eigenfunction expansions associated with second order differential equations 1 (2nd edn) (London: Oxford Univ. Press, 1962).Google Scholar
33Titchmarsh, E. C.. Theory of functions (London: Oxford Univ. Press, 1939).Google Scholar
34Tolstov, G. P.. Fourier series (Englewood Cliffs, N.J.: Prentice-Hall, 1962).Google Scholar
35Wagner, K. W.. Elektromagnetische Ausgleichsvorgänge in Freileitungen und Kabeln (Leipzig: Teubner, 1908).Google Scholar
36Walter, J.. Regular eigenvalue problems with eigenvalue parameter in the boundary conditions. Math. Z. 133 (1973), 301312.CrossRefGoogle Scholar
37Zecca, P.. Su un problema al contorno per l'equazione Δu + λu = 0. Rend. Accad. Sci. Fis. Mat. Napoli 33 (1966), 279303.Google Scholar
38Zygmund, A.. Trigonometric series 1 (2nd edn) (London: Pergamon, 1959Google Scholar
246
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *