No CrossRef data available.
Published online by Cambridge University Press: 12 July 2007
We present an L–A pair for the Hess–Apel'rot case of a heavy rigid three-dimensional body. Using it, we give an algebro-geometric integration procedure. Generalizing this L–A pair, we obtain a new completely integrable case of the Euler–Poisson equations in dimension four. Explicit formulae for integrals that are in involution are given. This system is a counterexample to one of Ratiu's theorems. A corrected version of this classification theorem is proved.