Skip to main content
    • Aa
    • Aa

Analysis of the PML equations in general convex geometry

  • Matti Lassas (a1) and Erkki Somersalo (a2)

In this work, we study a mesh termination scheme in acoustic scattering, known as the perfectly matched layer (PML) method. The main result of the paper is the following. Assume that the scatterer is contained in a bounded and strictly convex artificial domain. We surround this domain by a PML of constant thickness. On the peripheral boundary of this layer, a homogenous Dirichlet condition is imposed. We show in this paper that the resulting boundary-value problem for the scattered field is uniquely solvable for all wavenumbers and the solution within the artificial domain converges exponentially fast toward the full-space scattering solution when the layer thickness is increased. The proof is based on the idea of interpreting the PML medium as a complex stretching of the coordinates in Rn and on the use of complexified layer potential techniques.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Royal Society of Edinburgh Section A: Mathematics
  • ISSN: 0308-2105
  • EISSN: 1473-7124
  • URL: /core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 22 *
Loading metrics...

Abstract views

Total abstract views: 87 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th September 2017. This data will be updated every 24 hours.