Skip to main content Accessibility help
×
×
Home

Bifurcation sets of families of reflections on surfaces in ℝ3

  • P. J. Giblin (a1) and S. Janeczko (a2)
Extract

We introduce a new affinely invariant structure on smooth surfaces in ℝ3 by defining a family of reflections in all points of the surface. We show that the bifurcation set of this family has a special structure at ‘ points’, which are not detected by the flat geometry of the surface. These points (without an associated structure on the surface) have also arisen in the study of the centre symmetry set; using our technique we are able to explain how the points are created and annihilated in a generic family of surfaces. We also present the bifurcation set in a global setting.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Royal Society of Edinburgh Section A: Mathematics
  • ISSN: 0308-2105
  • EISSN: 1473-7124
  • URL: /core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed