Hostname: page-component-7dd5485656-kp629 Total loading time: 0 Render date: 2025-10-28T16:55:57.513Z Has data issue: false hasContentIssue false

Bifurcations and pattern formation in a host–parasitoid model with nonlocal effect

Published online by Cambridge University Press:  04 March 2024

Chuang Xiang
Affiliation:
School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, P. R. China (1604059603@qq.com) School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079, P. R. China
Jicai Huang
Affiliation:
School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079, P. R. China (hjc@ccnu.edu.cn, lumin@mails.ccnu.edu.cn)
Min Lu
Affiliation:
School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079, P. R. China (hjc@ccnu.edu.cn, lumin@mails.ccnu.edu.cn)
Shigui Ruan
Affiliation:
Department of Mathematics, University of Miami, Coral Gables, FL 33146, USA (ruan@math.miami.edu)
Hao Wang
Affiliation:
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada (hao8@ualberta.ca)

Abstract

In this paper, we analyse Turing instability and bifurcations in a host–parasitoid model with nonlocal effect. For a ordinary differential equation model, we provide some preliminary analysis on Hopf bifurcation. For a reaction–diffusion model with local intraspecific prey competition, we first explore the Turing instability of spatially homogeneous steady states. Next, we show that the model can undergo Hopf bifurcation and Turing–Hopf bifurcation, and find that a pair of spatially nonhomogeneous periodic solutions is stable for a (8,0)-mode Turing–Hopf bifurcation and unstable for a (3,0)-mode Turing–Hopf bifurcation. For a reaction–diffusion model with nonlocal intraspecific prey competition, we study the existence of the Hopf bifurcation, double-Hopf bifurcation, Turing bifurcation, and Turing–Hopf bifurcation successively, and find that a spatially nonhomogeneous quasi-periodic solution is unstable for a (0,1)-mode double-Hopf bifurcation. Our results indicate that the model exhibits complex pattern formations, including transient states, monostability, bistability, and tristability. Finally, numerical simulations are provided to illustrate complex dynamics and verify our theoretical results.

Information

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andreu-Vaillo, F., Mazon, J. M., Rossi, J. D. and Toledo-Melero, J. J., Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, Vol. 165 (American Mathematical Society, Providence, RI, 2010).10.1090/surv/165CrossRefGoogle Scholar
Bates, P. W., On some nonlocal evolution equations arising in materials science, in ‘Nonlinear Dynamics and Evolution Equations’, H. Brunner, X.-Q. Zhao and X. Zou (eds.), Fields Institute Communications 48 (2006), 13–52.Google Scholar
Britton, N. F.. Aggregation and the competitive exclusion principle. J. Theor. Biol. 136 (1989), 5766.10.1016/S0022-5193(89)80189-4CrossRefGoogle ScholarPubMed
Cantrell, R. S. and Cosner, C., Spatial Ecology via Reaction–Diffusion Equations, Wiley Series in Mathematical and Computational Biology (John Wiley & Sons, 2003).10.1002/0470871296CrossRefGoogle Scholar
Cao, X. and Jiang, W.. Turing–Hopf bifurcation and spatiotemporal patterns in a diffusive predator–prey system with Crowley–Martin functional response. Nonlinear Anal. Real World Appl. 43 (2018), 428450.10.1016/j.nonrwa.2018.03.010CrossRefGoogle Scholar
Cao, X. and Jiang, W.. Double zero singularity and spatiotemporal patterns in a diffusive predator–prey model with nonlocal prey competition. Discrete Contin. Dyn. Syst. Ser. B 25 (2020), 34613489.Google Scholar
Chen, S. and Yu, J.. Stability and bifurcation in predator–prey systems with nonlocal prey competition. Discrete Contin. Dyn. Syst. 38 (2018), 4361.10.3934/dcds.2018002CrossRefGoogle Scholar
Du, Y. and Lou, Y.. Qualitative behavior of positive solutions of a predator–prey model: effects of saturation. Proc. R. Soc. Edinburgh Sect. A 131 (2001), 321349.10.1017/S0308210500000895CrossRefGoogle Scholar
Erbach, A., Lutscher, F. and Seo, G.. Bistability and limit cycles in generalist predator–prey dynamics. Ecol. Complex 14 (2013), 4855.10.1016/j.ecocom.2013.02.005CrossRefGoogle Scholar
Ermentrout, G. B. and Cowan, J. D.. Secondary bifurcation in neuronal nets. SIAM J. Appl. Math. 39 (1980), 323340.10.1137/0139028CrossRefGoogle Scholar
Fagan, W. F., Lewis, M. A., Neubert, M. G. and Van Den Driessche, P.. Invasion theory and biological control. Ecol. Lett. 5 (2002), 148157.10.1046/j.1461-0248.2002.0_285.xCrossRefGoogle Scholar
Furter, J. and Grinfeld, M.. Local vs. nonlocal interactions in population dynamics. J. Math. Biol. 27 (1989), 6580.10.1007/BF00276081CrossRefGoogle Scholar
Geng, D. and Wang, B.. Normal form formulations of double-Hopf bifurcation for partial functional differential equations with nonlocal effect. J. Differ. Equ. 309 (2022), 741785.10.1016/j.jde.2021.11.046CrossRefGoogle Scholar
Gourley, S.. Travelling front solutions of a nonlocal Fisher equation. J. Math. Biol. 41 (2000), 272284.10.1007/s002850000047CrossRefGoogle ScholarPubMed
Gourley, S. and Ruan, S.. Spatio-temporal delays in plankton models: local stability and bifurcations. Appl. Math. Comput. 145 (2003), 391412.Google Scholar
Guckenheimer, J. and Holmes, P.. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (New York, Springer, 1983).10.1007/978-1-4612-1140-2CrossRefGoogle Scholar
Hanski, I., Hansson, L. and Henttonen, H.. Specialist predators, generalist predators and the microtine rodent cycle. J. Anim. Ecol. 60 (1991), 353367.10.2307/5465CrossRefGoogle Scholar
Hassard, B. D., Kazarinoff, N. D. and Wan, Y. H.. Theory and Application for Hopf Bifurcation (Cambridge, Cambridge University Press, 1981).Google Scholar
Jiang, W., An, Q. and Shi, J.. Formulation of the normal form of Turing–Hopf bifurcation in partial functional differential equations. J. Differ. Equ. 268 (2020), 60676102.10.1016/j.jde.2019.11.039CrossRefGoogle Scholar
Jiang, W., Wang, H. and Cao, X.. Turing instability and Turing–Hopf bifurcation in diffusive Schnakenberg system with gene expression time delay. J. Dyn. Differ. Equ. 31 (2019), 22232247.10.1007/s10884-018-9702-yCrossRefGoogle Scholar
Lindström, T.. Qualitative analysis of a predator–prey system with limit cycles. J. Math. Biol. 31 (1993), 541561.10.1007/BF00161198CrossRefGoogle Scholar
Liu, Z., Shen, Z., Wang, H. and Jin, Z.. Analysis of a diffusive SIR model with seasonality and nonlocal incidence of infections. SIAM J. Appl. Math. 79 (2019), 22182241.10.1137/18M1231493CrossRefGoogle Scholar
Lu, M., Huang, J. and Wang, H.. An organizing center of codimension four in a predator–prey model with generalist predator: from tristability and quadristability to transients in a nonlinear environmental change. SIAM J. Appl. Dyn. Syst. 22 (2023), 694729.10.1137/22M1488466CrossRefGoogle Scholar
Lu, M., Xiang, C., Huang, J. and Wang, H.. Bifurcations in the diffusive Bazykin model. J. Differ. Equ. 323 (2022), 280311.10.1016/j.jde.2022.03.039CrossRefGoogle Scholar
Madec, S., Casas, J., Barles, G. and Suppo, C.. Bistability induced by generalist natural enemies can reverse pest invasions. J. Math. Biol. 75 (2017), 543575.10.1007/s00285-017-1093-xCrossRefGoogle ScholarPubMed
Magal, C., Conser, C., Ruan, S. and Casas, J.. Control of invasive hosts by generalist parasitoids. Math. Med. Biol. 25 (2008), 120.10.1093/imammb/dqm011CrossRefGoogle ScholarPubMed
Owen, M. R. and Lewis, M. A.. How predation can slow, stop or reverse a prey invasion. Bull. Math. Biol. 63 (2001), 655684.10.1006/bulm.2001.0239CrossRefGoogle ScholarPubMed
Perko, L.. Differential Equations and Dynamical Systems (3rd ed., New York, Springer, 2006).Google Scholar
Ruan, S., Spatial–temporal dynamics in nonlocal epidemiological models, in ‘Mathematics for Life Science and Medicine’, Y. Takeuchi, K. Sato, and Y. Iwasa (eds.), (Springer-Verlag, Berlin, 2007, pp. 97–122).10.1007/978-3-540-34426-1_5CrossRefGoogle Scholar
Schreiber, S. J.. On coexistence of species sharing a predator. J. Differ. Equ. 196 (2004), 209225.10.1016/S0022-0396(03)00169-4CrossRefGoogle Scholar
Seo, G. and Wolkowicz, G. S. K.. Pest control by generalist parasitoids: a bifurcation theory. Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 31573187.Google Scholar
Shi, H. and Ruan, S.. Spatial, temporal and spatiotemporal patterns of diffusive predator–prey models with mutual interference. IMA J. Appl. Math. 80 (2015), 15341568.10.1093/imamat/hxv006CrossRefGoogle Scholar
Shi, J., Wang, C. and Wang, H.. Diffusive spatial movement with memory and maturation delays. Nonlinearity 32 (2019), 31883208.10.1088/1361-6544/ab1f2fCrossRefGoogle Scholar
Sun, G., Zhang, H., Chang, L., Jin, Z., Wang, H. and Ruan, S.. On the dynamics of a diffusive foot-and-mouth disease model with nonlocal infections. SIAM J. Appl. Math. 82 (2022), 15871610.10.1137/21M1412992CrossRefGoogle Scholar
van Leeuwen, E., Jansen, V. A. A. and Bright, P. W.. How population dynamics shape the functional response in a one-predator–two-prey system. Ecology 88 (2007), 15711581.10.1890/06-1335CrossRefGoogle Scholar
Wang, H. and Salmaniw, Y.. Open problems in PDE models for knowledge-based animal movement via nonlocal perception and cognitive mapping. J. Math. Biol. 86 (2023), 71.10.1007/s00285-023-01905-9CrossRefGoogle ScholarPubMed
Wu, S. and Song, Y.. Stability and spatiotemporal dynamics in a diffusive predator–prey model with nonlocal prey competition. Nonlinear Anal. Real World Appl. 48 (2019), 1239.10.1016/j.nonrwa.2019.01.004CrossRefGoogle Scholar
Xiang, C., Huang, J., Ruan, S. and Xiao, D.. Bifurcation analysis in a host–generalist parasitoid model with Holling II functional response. J. Differ. Equ. 268 (2020), 46184662.10.1016/j.jde.2019.10.036CrossRefGoogle Scholar
Xiang, C., Huang, J. and Wang, H.. Linking bifurcation analysis of Holling–Tanner model with generalist predator to a changing environment. Stud. Appl. Math. 149 (2022), 124163.10.1111/sapm.12492CrossRefGoogle Scholar
Xiao, D. and Zhang, K. F.. Multiple bifurcations of a predator–prey system. Discrete Contin. Dyn. Syst. Ser. B 8 (2007), 417437.Google Scholar
Yang, R. and Song, Y.. Spatial resonance and Turing–Hopf bifurcations in the Gierer–Meinhardt model. Nonlinear Anal. Real World Appl. 31 (2016), 356387.10.1016/j.nonrwa.2016.02.006CrossRefGoogle Scholar
Yi, F., Wei, J. and Shi, J.. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system. J. Differ. Equ. 246 (2009), 19441977.10.1016/j.jde.2008.10.024CrossRefGoogle Scholar
Zhao, G. and Ruan, S.. Spatial and temporal dynamics of a nonlocal viral infection model. SIAM J. Appl. Math. 78 (2018), 19541980.10.1137/17M1144106CrossRefGoogle Scholar