Skip to main content Accessibility help
×
Home

Functional inequalities for modified Struve functions

  • Árpád Baricz (a1) (a2) and Tibor K. Pogány (a3) (a4)

Abstract

By using a general result on the monotonicity of quotients of power series, our aim is to prove some monotonicity and convexity results for the modified Struve functions. Moreover, as consequences of the above-mentioned results, we present some functional inequalities as well as lower and upper bounds for modified Struve functions. Our main results complement and improve the 1998 results of Joshi and Nalwaya.

Copyright

References

Hide All
1Alzer, H. and Qiu, S.-L.. Monotonicity theorems and inequalities for the complete elliptic integrals. J. Computat. Appl. Math. 172 (2004), 289312.
2Anderson, G. D., Vamanamurthy, M. K. and Vuorinen, M.. Generalized convexity and inequalities. J. Math. Analysis Applic. 335 (2007), 12941308.
3Balasubramanian, R., Ponnusamy, S. and Vuorinen, M.. Functional inequalities for the quotients of hypergeometric functions. J. Math. Analysis Applic. 218 (1998), 256268.
4Baricz, Á.. Landen-type inequality for Bessel functions. Computat. Meth. Funct. Theory 5 (2005), 373379.
5Baricz, Á.. Functional inequalities involving special functions. J. Math. Analysis Applic. 319 (2006), 450459.
6Baricz, Á.. Functional inequalities involving special functions. II. J. Math. Analysis Applic. 327 (2007), 12021213.
7Baricz, Á.. Functional inequalities for Galue's generalized modified Bessel functions. J. Math. Inequal. 1 (2007), 183193.
8Baricz, Á.. Bounds for modified Bessel functions of the first and second kinds. Proc. Edinb. Math. Soc. 53 (2010), 575599.
9Biernacki, M. and Krzyż, J.. On the monotonity of certain functionals in the theory of analytic functions. Annales Univ. Mariae Curie-Sklodowska A 9 (1955), 135147.
10Heikkala, V., Vamanamurthy, M. K. and Vuorinen, M.. Generalized elliptic integrals. Computat. Meth. Funct. Theory 9 (2009), 75109.
11Joshi, C. M. and Nalwaya, S.. Inequalities for modified Struve functions. J. Indian Math. Soc. 65 (1998), 4957.
12Kalmykov, S. I. and Karp, D.. Log-concavity for series in reciprocal gamma functions and applications. Integ. Transf. Special Funct. 24 (2013), 859872.
13Laforgia, A.. Bounds for modified Bessel functions. J. Computat. Appl. Math. 34 (1991), 263267.
14Mitrinović, D. S.. Analytic inequalities (Springer, 1970).
15Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clark, C. W. (eds). NIST handbook of mathematical functions (Cambridge University Press, 2010).
16Ponnusamy, S. and Vuorinen, M.. Asymptotic expansions and inequalities for hypergeometric functions. Mathematika 44 (1997), 4364.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed