No CrossRef data available.
Published online by Cambridge University Press: 12 July 2007
A geodesic γ on the unit tangent sphere bundle T1M of a Riemannian manifold (M, g), equipped with the Sasaki metric gS, can be considered as a curve x on M together with a unit vector field V along it. We study the curves x. In particular, we investigate for which manifolds (M, g) all these curves have constant first curvature κ1 or have vanishing curvature κi for some i = 1, 2 or 3.