Skip to main content
×
×
Home

Global attractivity and extinction for Lotka–Volterra systems with infinite delay and feedback controls

  • Teresa Faria (a1) and Yoshiaki Muroya (a2)
Abstract

The paper deals with a multiple species Lotka–Volterra model with infinite distributed delays and feedback controls, for which we assume a weak form of diagonal dominance of the instantaneous negative intra-specific terms over the infinite delay effect in both the population variables and controls. General sufficient conditions for the existence and attractivity of a saturated equilibrium are established. When the saturated equilibrium is on the boundary of , sharper criteria for the extinction of all or part of the populations are given. While the literature usually treats the case of competitive systems only, here no restrictions on the signs of the intra- and inter-specific delayed terms are imposed. Moreover, our technique does not require the construction of Lyapunov functionals.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Royal Society of Edinburgh Section A: Mathematics
  • ISSN: 0308-2105
  • EISSN: 1473-7124
  • URL: /core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed