Skip to main content
×
Home
    • Aa
    • Aa

Local minimisers and singular perturbations*

  • Robert V. Kohn (a1) and Peter Sternberg (a2)
Synopsis
Synopsis

We construct local minimisers to certain variational problems. The method is quite general and relies on the theory of Γ-convergence. The approach is demonstrated through the model problem

It is shown that in certain nonconvex domains Ω ⊂ ℝn and for ε small, there exist nonconstant local minimisers uε satisfying uε ≈ ± 1 except in a thin transition layer. The location of the layer is determined through the requirement that in the limit uεu0, the hypersurface separating the states u0 = 1 and u0 = −1 locally minimises surface area. Generalisations are discussed with, for example, vector-valued u and “anisotropic” perturbations replacing |∇u|2.

Copyright
References
Hide All
1Alikakos N. D. and Bates P.. On the singular limit in a phase field model of phase transitions. Ann. Inst. H. Poincaré Anal. Non Lineaire (to appear).
2Alikakos N. D. and Shaing K. C.. On the singular limit for a class of problems modeling phase transitions. SIAM J. Math. Anal. 18 (1987), 14531462.
3Alikakos N. and Simpson H.. A variational approach for a class of singular perturbation problems and applications. Proc. Roy. Soc. Edinburgh Sect. A 107 (1987), 2742.
4Almgren F. J.. Existence and Regularity Almost Everywhere of Solutions to Elliptic Variational Problems with Constraints, Mem. Amer. Math. Soc. 165 (Providence R.I.: American Mathematical Society).
5Angenent S. B., Mallet-Paret J. and Peletier L. A.. Stable transition layers in a semilinear boundary value problem. J. Differential Equations 67 (1987), 212242.
6Berger M. S. and Fraenkel L. E.. On the asymptotic solution of a nonlinear Dirichlet problem. J. Math. Mech. 19 (19691970), 553585.
7Caginalp G.. Solidification problems as systems of nonlinear differential equations. In Nonlinear Systems of Partial Differential Equations in Applied Math., AMS Lectures in Appl. Math., Vol. 23, part 2, pp. 347370 (Providence, Rhode Island: American Mathematical Society).
8Caginalp G. and Fife P. C.. An analysis of a phase field model of a free boundary. Arch. Rational Mech. Anal. 92 (1986), 205242.
9Carr J., Gurtin M. E., and Slemrod M.. Structured phase transitions on a finite interval. Arch. Rational Mech. Anal. 86 (1984), 317351.
10Casten R. G. and Holland C. J.. Instability results for reaction diffusion equations with Neumann boundary conditions. J. Differential Equations 27 (1978), 266273.
11Chafee N.. Asymptotic behavior for solutions of a one-dimensional parabolic equation with homogeneous Neumann boundary conditions. J. Differential Equations 18 (1975), 111134.
12Conway E., Hoff D. and Smoller J.. Large time behavior of solutions of systems of nonlinear reaction-diffusion equations. SIAM J. Appl. Math. 35 (1978), 116.
13Dacorogna B.. Weak Continuity and Weak Lower Semicontinuity of Nonlinear Functionals. Lecture Notes in Mathematics 922 (Berlin: Springer, 1982).
14Maso G. Dal and Modica L.. Sulla convergenza dei minimi locali. Boll. Un. Mat. Ital (6) 1A (1982), 5561.
15Giorgi E. De. Convergence problems for functionals and operators. In Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, eds. Giorgi E. D. et al. , pp. 223244 (Bologna: Pitagora, 1979).
16Fife P. C. and Greenlee W. M.. Interior transition layers for elliptic boundary value problems. Russian Math. Surveys 29 (1974), 103131.
17Giusti E.. Minimal surfaces and functions of bounded variation (Basel: Birkhauser, 1984).
18Gurtin M. E.. On a theory of phase transitions with interfacial energy. Arch. Rational Mech. Anal. 87 (1984), 187212.
19Gurtin M. E.. Some results and conjectures in the gradient theory of phase transitions. In Metastability and Incompletely Posed Problems, eds. Antman S. et al. , pp. 135–146 (Berlin: Springer, 1987).
20Gurtin M. E. and Matano H.. On the structure of equilibrium phase transitions within the gradient theory of fluids. Quart. Appl. Math. 46 (1988), 301317.
21Hale J. and Vegas J.. A nonlinear parabolic equation with varying domain. Arch. Rational Mech. Anal. 86 (1984), 99123.
22Mahoney J. J. and Norbury J.. Asymptotic location of nodal lines using geodesic theory. J. Austral. Math. Soc. Ser. B 27 (1986), 259280.
23Massari U. and Miranda M.. Minimal surfaces of codimension one (Amsterdam: North Holland, 1984).
24Matano H.. Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci. 15 (1979), 401424.
25Matano H. and Mimura M.. Pattern formation in competition-diffusion systems in nonconvex domains. Publ. Res. Inst. Math. Sci. 19 (1983), 10491079.
26Modica L.. Γ-convergence to minimal surfaces problem and global solutions of Δu = 2(u3 - u). In Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, eds. Giorgi E. de et al. , pp. 223244 (Bologna: Pitagora, 1979).
27Modica L.. Gradient theory of phase transitions and minimal interface criteria. Arch. Rational Mech. Anal. 98 (1987), 123142.
28Modica L.. Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1987), 453486.
29Modica L. and Mortola S.. II limite nella Γ-convergenza di una famiglia di funzionali ellittichi. Boll. Un. Math. Ital. A (3) 14 (1977), 526529.
30Modica L. and Mortola S.. Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. (5) 14B (1977), 285299.
31Modica L. and Luckhaus S.. The Gibbs-Thompson relation within the gradient theory of phase transitions (to appear).
32Murray J. D.. On pattern formation mechanism for lepidopheran wing patterns and mammalian coat markings. Philos. Trans. Roy. Soc. London Ser. B 295 (1981), 473496.
33Murray J. D.. Prepattern formation mechanism for animal coat markings. J. Theoret. Biol. 88 (1981), 161199.
34Novick-Cohen A. and Segel L. A.. Nonlinear aspects of the Cahn-Hilliard equation. Phys. D 10 (1984), 278298.
35Owen N. C.. Nonconvex variational problems with general singular perturbations. Trans. Amer. Math. Soc. (to appear).
36Sternberg P.. The effect of a singular perturbation on nonconvex variational problems. (Ph.D. Thesis, New York University, 1986).
37Sternberg P.. The effect of a singular perturbation on nonconvex variational problems. Arch Rational Mech. Anal. 101 (1988), 209260.
38Vegas J. M.. Bifurcations caused by perturbing the domain in an elliptic equation. J. Differential Equations 48 (1983), 189226.
39Vegas J. M.. A Neumann elliptic problem with variable domain. In Contributions to Nonlinear Partial Differential Equations, eds. Bardos C. et al. , pp. 264273 (London: Pitman, 1983).
40Sternberg P.. Vector-valued local minimizers of nonconvex variational problems. In Proc. of Workshop on Nonlinear P.D.E.'s, Provo, 1987, eds. Bates P. and Fife P. (Berlin: Springer, to appear).
41Owen N. C. and Sternberg P.. Nonconvex variational problems with anisotropic perturbations (preprint).
42Fonseca I. and Tartar L.. The gradient theory of phase transitions for systems with two potential wells. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 89102.
43Ball J. and James R. D.. Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987), 1352.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Royal Society of Edinburgh Section A: Mathematics
  • ISSN: 0308-2105
  • EISSN: 1473-7124
  • URL: /core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 34 *
Loading metrics...

Abstract views

Total abstract views: 203 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th October 2017. This data will be updated every 24 hours.