1Alikakos N. D. and Bates P.. On the singular limit in a phase field model of phase transitions. *Ann. Inst. H. Poincaré Anal. Non Lineaire* (to appear).

2Alikakos N. D. and Shaing K. C.. On the singular limit for a class of problems modeling phase transitions. SIAM J. Math. Anal. 18 (1987), 1453–1462.

3Alikakos N. and Simpson H.. A variational approach for a class of singular perturbation problems and applications. Proc. Roy. Soc. Edinburgh Sect. A 107 (1987), 27–42.

4Almgren F. J.. Existence and Regularity Almost Everywhere of Solutions to Elliptic Variational Problems with Constraints, Mem. Amer. Math. Soc. 165 (Providence R.I.: American Mathematical Society).

5Angenent S. B., Mallet-Paret J. and Peletier L. A.. Stable transition layers in a semilinear boundary value problem. J. Differential Equations 67 (1987), 212–242.

6Berger M. S. and Fraenkel L. E.. On the asymptotic solution of a nonlinear Dirichlet problem. J. Math. Mech. 19 (1969–1970), 553–585.

7Caginalp G.. Solidification problems as systems of nonlinear differential equations. In Nonlinear Systems of Partial Differential Equations in Applied Math., AMS Lectures in Appl. Math., Vol. 23, part 2, pp. 347–370 (Providence, Rhode Island: American Mathematical Society).

8Caginalp G. and Fife P. C.. An analysis of a phase field model of a free boundary. Arch. Rational Mech. Anal. 92 (1986), 205–242.

9Carr J., Gurtin M. E., and Slemrod M.. Structured phase transitions on a finite interval. Arch. Rational Mech. Anal. 86 (1984), 317–351.

10Casten R. G. and Holland C. J.. Instability results for reaction diffusion equations with Neumann boundary conditions. J. Differential Equations 27 (1978), 266–273.

11Chafee N.. Asymptotic behavior for solutions of a one-dimensional parabolic equation with homogeneous Neumann boundary conditions. J. Differential Equations 18 (1975), 111–134.

12Conway E., Hoff D. and Smoller J.. Large time behavior of solutions of systems of nonlinear reaction-diffusion equations. SIAM J. Appl. Math. 35 (1978), 1–16.

13Dacorogna B.. Weak Continuity and Weak Lower Semicontinuity of Nonlinear Functionals. Lecture Notes in Mathematics 922 (Berlin: Springer, 1982).

14Maso G. Dal and Modica L.. Sulla convergenza dei minimi locali. Boll. Un. Mat. Ital (6) 1A (1982), 55–61.

15Giorgi E. De. Convergence problems for functionals and operators. In Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, eds. Giorgi E. D. et al. , pp. 223–244 (Bologna: Pitagora, 1979).

16Fife P. C. and Greenlee W. M.. Interior transition layers for elliptic boundary value problems. Russian Math. Surveys 29 (1974), 103–131.

17Giusti E.. Minimal surfaces and functions of bounded variation (Basel: Birkhauser, 1984).

18Gurtin M. E.. On a theory of phase transitions with interfacial energy. Arch. Rational Mech. Anal. 87 (1984), 187–212.

19Gurtin M. E.. Some results and conjectures in the gradient theory of phase transitions. In Metastability and Incompletely Posed Problems, eds. Antman S. et al. , pp. 135–146 (Berlin: Springer, 1987).

20Gurtin M. E. and Matano H.. On the structure of equilibrium phase transitions within the gradient theory of fluids. Quart. Appl. Math. 46 (1988), 301–317.

21Hale J. and Vegas J.. A nonlinear parabolic equation with varying domain. Arch. Rational Mech. Anal. 86 (1984), 99–123.

22Mahoney J. J. and Norbury J.. Asymptotic location of nodal lines using geodesic theory. J. Austral. Math. Soc. Ser. B 27 (1986), 259–280.

23Massari U. and Miranda M.. Minimal surfaces of codimension one (Amsterdam: North Holland, 1984).

24Matano H.. Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci. 15 (1979), 401–424.

25Matano H. and Mimura M.. Pattern formation in competition-diffusion systems in nonconvex domains. Publ. Res. Inst. Math. Sci. 19 (1983), 1049–1079.

26Modica L.. Γ-convergence to minimal surfaces problem and global solutions of *Δu = 2(u*^{3} - u). In Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, eds. Giorgi E. de et al. , pp. 223–244 (Bologna: Pitagora, 1979).

27Modica L.. Gradient theory of phase transitions and minimal interface criteria. Arch. Rational Mech. Anal. 98 (1987), 123–142.

28Modica L.. Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1987), 453–486.

29Modica L. and Mortola S.. II limite nella Γ-convergenza di una famiglia di funzionali ellittichi. Boll. Un. Math. Ital. A (3) 14 (1977), 526–529.

30Modica L. and Mortola S.. Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. (5) 14B (1977), 285–299.

31Modica L. and Luckhaus S.. The Gibbs-Thompson relation within the gradient theory of phase transitions (to appear).

32Murray J. D.. On pattern formation mechanism for lepidopheran wing patterns and mammalian coat markings. Philos. Trans. Roy. Soc. London Ser. B 295 (1981), 473–496.

33Murray J. D.. Prepattern formation mechanism for animal coat markings. J. Theoret. Biol. 88 (1981), 161–199.

34Novick-Cohen A. and Segel L. A.. Nonlinear aspects of the Cahn-Hilliard equation. Phys. D 10 (1984), 278–298.

35Owen N. C.. Nonconvex variational problems with general singular perturbations. *Trans. Amer. Math. Soc.* (to appear).

36Sternberg P.. The effect of a singular perturbation on nonconvex variational problems. (Ph.D. Thesis, New York University, 1986).

37Sternberg P.. The effect of a singular perturbation on nonconvex variational problems. Arch Rational Mech. Anal. 101 (1988), 209–260.

38Vegas J. M.. Bifurcations caused by perturbing the domain in an elliptic equation. J. Differential Equations 48 (1983), 189–226.

39Vegas J. M.. A Neumann elliptic problem with variable domain. In Contributions to Nonlinear Partial Differential Equations, eds. Bardos C. et al. , pp. 264–273 (London: Pitman, 1983).

40Sternberg P.. Vector-valued local minimizers of nonconvex variational problems. In Proc. of Workshop on Nonlinear P.D.E.'s, Provo, 1987, eds. Bates P. and Fife P. (Berlin: Springer, to appear).

41Owen N. C. and Sternberg P.. Nonconvex variational problems with anisotropic perturbations (preprint).

42Fonseca I. and Tartar L.. The gradient theory of phase transitions for systems with two potential wells. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 89–102.

43Ball J. and James R. D.. Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987), 13–52.