Skip to main content Accessibility help
×
Home

Model category structures and spectral sequences

  • Joana Cirici (a1), Daniela Egas Santander (a2), Muriel Livernet (a3) and Sarah Whitehouse (a4)

Abstract

Let R be a commutative ring with unit. We endow the categories of filtered complexes and of bicomplexes of R-modules, with cofibrantly generated model structures, where the class of weak equivalences is given by those morphisms inducing a quasi-isomorphism at a certain fixed stage of the associated spectral sequence. For filtered complexes, we relate the different model structures obtained, when we vary the stage of the spectral sequence, using the functors shift and décalage.

Copyright

References

Hide All
1Cartan, H. and Eilenberg, S.. Homological Algebra (Princeton, N. J.: Princeton University Press, 1956).
2Cirici, J., Egas Santander, D., Livernet, M. and Whitehouse, S.. Derived A-infinity algebras and their homotopies. Topol. Appl. 235 (2018), 214268.
3Cirici, J. and Guillén, F.. E 1-formality of complex algebraic varieties. Algebr. Geom. Topol. 14 (2014), 30493079.
4Cirici, J. and Guillén, F.. Homotopy theory of mixed Hodge complexes. Tohoku Math. J. 68 (2016), 349375.
5Cordero, L. A., Fernández, M., Ugarte, L. and Gray, A.. A general description of the terms in the Frölicher spectral sequence. Differ. Geom. Appl. 7 (1997), 7584.
6Deligne, P.. Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math. 40 (1971), 557.
7Di Natale, C.. Derived moduli of complexes and derived Grassmannians. Appl. Categ. Struct. 25 (2017), 809861.
8Fausk, H.. t-model structures on chain complexes of presheaves. arXiv:math/0612414.
9Félix, Y., Oprea, J. and Tanré, D.. Algebraic models in geometry, volume 17 of Oxford Graduate Texts in Mathematics (Oxford: Oxford University Press, 2008).
10Halperin, S. and Tanré, D.. Homotopie filtrée et fibrés C . Illinois J. Math. 34 (1990), 284324.
11Hirschhorn, P. S.. Model categories and their localizations, volume 99 of Mathematical Surveys and Monographs (Providence, RI: American Mathematical Society, 2003).
12Hovey, M.. Model categories, volume 63 of Mathematical Surveys and Monographs (Providence, RI: American Mathematical Society, 1999).
13Illusie, L.. Complexe cotangent et déformations. I, volume 239 of Lecture Notes in Mathematics (Berlin: Springer-Verlag, 1971).
14Laumon, G.. Sur la catégorie dérivée des 𝒟-modules filtrés. In Raynaud, Michel and Shioda, Tetsuji (eds.) Algebraic geometry (Tokyo/Kyoto, 1982), volume 1016 of Lecture Notes in Math., pp. 151237 (Berlin: Springer, 1983).
15McCleary, J.. A user's guide to spectral sequences, volume 58 of Cambridge Studies in Advanced Mathematics, 2nd edn (Cambridge: Cambridge University Press, 2001).
16Morgan, J. W.. The algebraic topology of smooth algebraic varieties. Inst. Hautes Études Sci. Publ. Math. 48 (1978), 137204.
17Muro, F. and Roitzheim, C.. Homotopy theory of bicomplexes. J. Pure Appl. Algebra 223 (2019), 19131939.
18Paranjape, K. H.. Some spectral sequences for filtered complexes and applications. J. Algebra 186 (1996), 793806.
19Riehl, E.. Category theory in context (Mineola, NY: Dover Publications, 2016).

Keywords

MSC classification

Model category structures and spectral sequences

  • Joana Cirici (a1), Daniela Egas Santander (a2), Muriel Livernet (a3) and Sarah Whitehouse (a4)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed