Published online by Cambridge University Press: 04 September 2023
The paper deals with the existence of positive solutions with prescribed $L^2$ norm for the Schrödinger equation
 norm for the Schrödinger equation
 or $\mathbb {R}^N\setminus \Omega$
 or $\mathbb {R}^N\setminus \Omega$ is a compact set, $\rho >0$
 is a compact set, $\rho >0$ , $V\ge 0$
, $V\ge 0$ (also $V\equiv 0$
 (also $V\equiv 0$ is allowed), $p\in (2,2+\frac 4 N)$
 is allowed), $p\in (2,2+\frac 4 N)$ . The existence of a positive solution $\bar u$
. The existence of a positive solution $\bar u$ is proved when $V$
 is proved when $V$ verifies a suitable decay assumption (Dρ), or if $\|V\|_{L^q}$
 verifies a suitable decay assumption (Dρ), or if $\|V\|_{L^q}$ is small, for some $q\ge \frac N2$
 is small, for some $q\ge \frac N2$ ($q>1$
 ($q>1$ if $N=2$
 if $N=2$ ). No smallness assumption on $V$
). No smallness assumption on $V$ is required if the decay assumption (Dρ) is fulfilled. There are no assumptions on the size of $\mathbb {R}^N\setminus \Omega$
 is required if the decay assumption (Dρ) is fulfilled. There are no assumptions on the size of $\mathbb {R}^N\setminus \Omega$ . The solution $\bar u$
. The solution $\bar u$ is a bound state and no ground state solution exists, up to the autonomous case $V\equiv 0$
 is a bound state and no ground state solution exists, up to the autonomous case $V\equiv 0$ and $\Omega =\mathbb {R}^N$
 and $\Omega =\mathbb {R}^N$ .
.
 , volume 240 of Progress in Mathematics (Birkhäuser Verlag, Basel, 2006).10.1007/3-7643-7396-2CrossRefGoogle Scholar
, volume 240 of Progress in Mathematics (Birkhäuser Verlag, Basel, 2006).10.1007/3-7643-7396-2CrossRefGoogle Scholar . Rev. Mat. Iberoamericana 6 (1990), 1–15.CrossRefGoogle Scholar
. Rev. Mat. Iberoamericana 6 (1990), 1–15.CrossRefGoogle Scholar . In Mathematical Analysis and Applications, Part A, volume 7 of Adv. in Math. Suppl. Stud. (Academic Press, New York-London, 1981), pp. 369–402.Google Scholar
. In Mathematical Analysis and Applications, Part A, volume 7 of Adv. in Math. Suppl. Stud. (Academic Press, New York-London, 1981), pp. 369–402.Google Scholar in $R^n$
 in $R^n$ . Arch. Rational Mech. Anal. 105 (1989), 243–266.10.1007/BF00251502CrossRefGoogle Scholar
. Arch. Rational Mech. Anal. 105 (1989), 243–266.10.1007/BF00251502CrossRefGoogle Scholar . Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 141–166.CrossRefGoogle Scholar
. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 141–166.CrossRefGoogle Scholar -critical and supercritical NLS on bounded domains. Anal. PDE 7 (2014), 1807–1838.CrossRefGoogle Scholar
-critical and supercritical NLS on bounded domains. Anal. PDE 7 (2014), 1807–1838.CrossRefGoogle Scholar -supercritical nls in bounded domains and exterior domains. Calc. Var. Partial. Differ. Equ. 62 (2023), 176.CrossRefGoogle Scholar
-supercritical nls in bounded domains and exterior domains. Calc. Var. Partial. Differ. Equ. 62 (2023), 176.CrossRefGoogle Scholar