Skip to main content

On an open problem of Weidmann: essential spectra and square-integrable solutions

  • Jiangang Qi (a1) and Shaozhu Chen (a1)

In 1987, Weidmann proved that, for a symmetric differential operator τ and a real λ, if there exist fewer square-integrable solutions of (τ−λ)y = 0 than needed and if there is a self-adjoint extension of τ such that λ is not its eigenvalue, then λ belongs to the essential spectrum of τ. However, he posed an open problem of whether the second condition is necessary and it has been conjectured that the second condition can be removed. In this paper, we first set up a formula of the dimensions of null spaces for a closed symmetric operator and its closed symmetric extension at a point outside the essential spectrum. We then establish a formula of the numbers of linearly independent square-integrable solutions on the left and the right subintervals, and on the entire interval for nth-order differential operators. The latter formula ascertains the above conjecture. These results are crucial in criteria of essential spectra in terms of the numbers of square-integrable solutions for real values of the spectral parameter.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Royal Society of Edinburgh Section A: Mathematics
  • ISSN: 0308-2105
  • EISSN: 1473-7124
  • URL: /core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 15 *
Loading metrics...

Abstract views

Total abstract views: 53 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 16th January 2018. This data will be updated every 24 hours.