Hostname: page-component-68c7f8b79f-fcrnt Total loading time: 0 Render date: 2025-12-19T08:12:52.181Z Has data issue: false hasContentIssue false

On averages of completely multiplicative functions over co-prime integer pairs

Published online by Cambridge University Press:  19 December 2025

Biao Wang*
Affiliation:
School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan, China (bwang@ynu.edu.cn)

Abstract

Recently, Donoso, Le, Moreira, and Sun studied the asymptotic behaviour of the averages of completely multiplicative functions over the Gaussian integers. They derived Wirsing’s theorem for Gaussian integers, answered a question of Frantzikinakis and Host for the sum of two squares, and obtained a variant of a theorem of Bergelson and Richter on ergodic averages along the number of prime factors of integers. In this paper, we will show the analogue of these results for co-prime integer pairs. Moreover, building on Frantzikinakis and Host’s results, we obtain some convergences on the multilinear averages of multiplicative functions over primitive lattice points.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Benkoski, S. J.. The probability that $k$ positive integers are relatively $r$-prime. J. Number Theory. 8 (1976), 218223.10.1016/0022-314X(76)90103-7CrossRefGoogle Scholar
Bergelson, V. and Richter, F. K.. Dynamical generalizations of the prime number theorem and disjointness of additive and multiplicative semigroup actions. Duke Math. J. (15) 171 (2022), 31333200.10.1215/00127094-2022-0055CrossRefGoogle Scholar
Delange, H.. Sur les fonctions arithmétiques multiplicatives. Ann. Sci. ÉCole Norm. Sup. (3) 78 (1961), 273304.10.24033/asens.1103CrossRefGoogle Scholar
Donoso, S., Le, A. N., Moreira, J. and Sun, W.. Averages of completely multiplicative functions over the Gaussian integers – a dynamical approach. Trans. Amer. Math. Soc. (10) 377 (2024), 70817115.Google Scholar
Erdős, P.. Some unsolved problems. Michigan Math. J. 4 (1957), 291300.10.1307/mmj/1028997963CrossRefGoogle Scholar
Frantzikinakis, N. and Host, B.. Asymptotics for multilinear averages of multiplicative functions. Math. Proc. Cambridge Philos. Soc. (1) 161 (2016), 87101.10.1017/S0305004116000116CrossRefGoogle Scholar
Frantzikinakis, N. and Host, B.. Higher order Fourier analysis of multiplicative functions and applications. J. Amer. Math. Soc. (1) 30 (2017), 67157.10.1090/jams/857CrossRefGoogle Scholar
Halász, G.. Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen. Acta Math. Acad. Sci. Hungar. 19 (1968), 365403.10.1007/BF01894515CrossRefGoogle Scholar
Klurman, O. and Mangerel, A. P.. Effective Asymptotic Formulae for Multilinear Averages of Multiplicative functions, 2017. arXiv:1708.03176.Google Scholar
Landau, E.. Handbuch der Lehre von der Verteilung der Primzahlen. 2 Bände. 2nd Ed, (With an Appendix by Paul T. Bateman., New York, 1953).Google Scholar
Li, H., Wang, B., Wang, C. and Yi, S.. Some ergodic theorems over squarefree numbers and squarefull numbers. Acta Arith. (2) 221 (2025), 117140.Google Scholar
Loyd, K.. A dynamical approach to the asymptotic behavior of the sequence $\Omega(n)$. Ergodic Theory Dynam. Systems. (11) 43 (2023), 36853706.10.1017/etds.2022.81CrossRefGoogle Scholar
Matthiesen, L.. Linear correlations of multiplicative functions. Proc. Lond. Math. Soc. (3). (2) 121 (2020), 372425.10.1112/plms.12309CrossRefGoogle Scholar
Nowak, W. G.. Primitive lattice points inside an ellipse. Czechoslovak Math. J. (2) 55 (2005), (130), 519530.10.1007/s10587-005-0043-8CrossRefGoogle Scholar
Nymann, J. E.. On the probability that $k$ positive integers are relatively prime. J. Number Theory. 4 (1972), 469473.10.1016/0022-314X(72)90038-8CrossRefGoogle Scholar
Sittinger, B. D.. The probability that random algebraic integers are relatively -prime. J. Number Theory. (1) 130 (2010), 164171.10.1016/j.jnt.2009.06.008CrossRefGoogle Scholar
Tenenbaum, G.. Introduction to analytic and probabilistic number theory. Of Graduate Studies in Mathematics., 3rd edn., Vol. 163, (American Mathematical Society, Providence, RI, 2015).Google Scholar
von Mangoldt, H. C. F.. Beweis der Gleichung. $\sum_{k=1}^\infty\frac{\mu(k)}{k}=0$, volume 2. Sitzungsberichte der KöNiglich Preussischen Akademie der Wissenschaften zu, Berlin, (1897).Google Scholar
Wang, B.. Dynamics on the number of prime divisors for additive arithmetic semigroups. Finite Fields Appl. 81 (2022), Paper No. 102029, 128.10.1016/j.ffa.2022.102029CrossRefGoogle Scholar
Wang, B., Wei, Z., Yan, P. and Yi, S.. Generalizations of the Erdős-kac Theorem and the Prime Number Theorem. Commun. Math. Stat. 13 (2025), 11771197.10.1007/s40304-023-00354-6CrossRefGoogle Scholar
Wirsing, E.. Das asymptotische Verhalten von Summen über multiplikative Funktionen. Math. Ann. 143 (1961), 75102.10.1007/BF01351892CrossRefGoogle Scholar
Wirsing, E.. Elementare Beweise des Primzahlsatzes mit Restglied. II. J. Reine Angew. Math. 214/215 (1964), 118.10.1515/crll.1964.214-215.1CrossRefGoogle Scholar
Wirsing, E.. Das asymptotische Verhalten von Summen über multiplikative Funktionen. II. Acta Math. Acad. Sci. Hungar. 18 (1967), 411467.10.1007/BF02280301CrossRefGoogle Scholar