Skip to main content Accessibility help

Optimal control of quasilinear parabolic equations*

  • Eduardo Casas (a1), Luis A. Fernández (a2) and Jiongmin Yong (a3)


This paper deals with optimal control problems governed by quasilinear parabolic equations in divergence form, whose cost functional is of Lagrangian type. Our aim is to prove the existence of solutions and derive some optimality conditions. To attain this second objective, we accomplish the sensitivity analysis of the state equation with respect to the control, proving that, under some assumptions, this relation is Gâteaux differentiable. Finally, a regularising procedure along with Ekeland's variational principle allow us to treat some other problems for which this differentiability property cannot be stated.



Hide All
1Ahmed, N. U.. Optimal control of a class of strongly nonlinear parabolic systems. J. Math. Anal. Appl. 61 (1977), 188207.
2Barbu, V.. Optimal control of variational inequalities (Boston: Pitman, 1984).
3Casas, E. and Fernández, L. A.. Optimal control of quasilinear elliptic equations with non differentiable coefficients at the origin. Rev. Mat. Univ. Complut. Madrid 4 (1991), 227–50.
4Casas, E. and Fernández, L. A.. Distributed control of systems governed by a general class of quasilinear elliptic equations. J. Differential Equations 104 (1993), 2047.
5Casas, E. and Yong, J.. Maximum principle for state-constrained optimal control problems governed by quasilinear elliptic equations (Technical Report 1063, IMA, November 1992).
6Chryssoverghi, I.. Nonconvex optimal control of nonlinear monotone parabolic systems. Systems Control Lett. 8 (1986), 5562.
7Ekeland, I.. Nonconvex minimization problems. Bull. Amer. Math. Soc. 1 (1979), 7691.
8Ekeland, I. and Temam, R.. Analyse Convexe et Problèmes Variationnels (Paris: Dunod-Gauthier Villars, 1974).
9Fattorini, H. O.. Optimal control problems for distributed parameter systems governed by semilinear parabolic equations in L 1 and L spaces. In Optimal Control of Partial Differential Equations, Hoffmann, K. H. and Krabs, W., eds, Lecture Notes in Control and Information Sciences 149, pp. 6880 (Berlin: Springer, 1991).
10Ladyzhenskaya, O. A., Solonnikov, V. A. and Ural'tseva, N. N.. Linear and Quasilinear Equations of Parabolic Type (Providence, R.I.: American Mathematical Society, 1968).
11Lions, J. L.. Optimisation pour certaines classes d'équations d'évolution non linéaires. Ann. Mat. Pura Appl. 72 (1966), 275–93.
12Lions, J. L.. Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires (Paris: Dunod, 1969).
13Nabadan, S. and Noussair, E. S.. Existence theorems for optimal control of quasilinear parabolic partial differential equations. J. Austral. Math. Soc. 21 (1979), 90101.
14Noussair, E. S., Nabadan, S. and Teo, K. L.. On the existence of optimal controls for quasilinear parabolic partial differential equations. J. Optim. Theory Appl. 34 (1981), 99115.
15Pan, L. and Yong, J. Optimal control for quasilinear retarded parabolic systems. Math. Syst. Estim. Control (to appear).
16Papageorgiou, N. S.. On the optimal control of strongly nonlinear evolution equations. J. Math. Anal. Appl. 164 (1992), 83103.
17Tiba, D.. Optimality conditions for distributed control problems with nonlinear state equations. SIAM J. Control Optim. 23 (1985), 85110.
18Tiba, D.. Optimal control of nonsmooth distributed parameter systems, Lecture Notes in Mathematics 1459 (Berlin: Springer, 1990).
19Tröltzsch, F.. Optimality Conditions for Parabolic Control Problems and Applications (Leipzig: Teubner-Texte, 1984).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Royal Society of Edinburgh Section A: Mathematics
  • ISSN: 0308-2105
  • EISSN: 1473-7124
  • URL: /core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed