Skip to main content Accesibility Help

Polynomial interpolation at points of a geometric mesh on a triangle

  • S. L. Lee (a1) and G. M. Phillips (a2)

In an earlier paper [8], I. J. Schoenberg discussed polynomial interpolation in one dimension at the points of a geometric progression, which was originally proposed by James Stirling. In the present paper, these ideas are generalised to two-dimensional polynomial interpolation at the points of a geometric mesh on a triangle. A Lagrange form is obtained for this interpolating polynomial and an algorithm is derived for evaluating it efficiently.

Hide All
1Bos, L. P.. Bounding the Lebesgue function for Lagrange interpolation in a simplex. J. Approx Theory 38 (1983), 4359.
2Lee, S. L. and Phillips, G. M.. Interpolation on the triangle. Comm. Appl. Numer. Methods 3 (1987), 271276.
3Mitchell, A. R. and Phillips, G. M.. Construction of basis functions in the finite element method. BIT12 (1972), 8189.
4Olmsted, C.. Two formulas for the general multivariate polynomial which interpolates a regular grid on a simplex. Math. Comp. 47 (1986), 275284.
5Polya, G. and Szego, G.. Problems and Theorems in Analysis I. (Berlin: Springer, 1972).
6Runge, C.. Uber eine numerische Berechnung der Argumente der cyclischen, hyperbolischen und logarithmischen Funktionen. Ada Math. 15 (1891), 221247.
7Schellbach, K. H.. Die Lehre von den elliptischen Integralen und den Theta-Funktionen (Berlin: Georg Reimer, 1864).
8Schoenberg, I. J.. On polynomial interpolation at the points of a geometric progression. Proc. Roy. Soc. Edinburgh Sect. A 90 (1981), 195207.
9Stirling, James. The differential method or a Treatise concerning summation and interpolation of infinite series (London: E. Cave, 1749). (Translation by F. Holliday of the original Latin edition of 1730.)
10Stancu, D. D.. The remainder of certain linear approximation formulas in two variables. SIAM J. Numer. Anal. Ser. B 1 (1964), 137163.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Royal Society of Edinburgh Section A: Mathematics
  • ISSN: 0308-2105
  • EISSN: 1473-7124
  • URL: /core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed