Skip to main content Accesibility Help
×
×
Home

Polynomial interpolation at points of a geometric mesh on a triangle

  • S. L. Lee (a1) and G. M. Phillips (a2)
Synopsis

In an earlier paper [8], I. J. Schoenberg discussed polynomial interpolation in one dimension at the points of a geometric progression, which was originally proposed by James Stirling. In the present paper, these ideas are generalised to two-dimensional polynomial interpolation at the points of a geometric mesh on a triangle. A Lagrange form is obtained for this interpolating polynomial and an algorithm is derived for evaluating it efficiently.

Copyright
References
Hide All
1Bos, L. P.. Bounding the Lebesgue function for Lagrange interpolation in a simplex. J. Approx Theory 38 (1983), 4359.
2Lee, S. L. and Phillips, G. M.. Interpolation on the triangle. Comm. Appl. Numer. Methods 3 (1987), 271276.
3Mitchell, A. R. and Phillips, G. M.. Construction of basis functions in the finite element method. BIT12 (1972), 8189.
4Olmsted, C.. Two formulas for the general multivariate polynomial which interpolates a regular grid on a simplex. Math. Comp. 47 (1986), 275284.
5Polya, G. and Szego, G.. Problems and Theorems in Analysis I. (Berlin: Springer, 1972).
6Runge, C.. Uber eine numerische Berechnung der Argumente der cyclischen, hyperbolischen und logarithmischen Funktionen. Ada Math. 15 (1891), 221247.
7Schellbach, K. H.. Die Lehre von den elliptischen Integralen und den Theta-Funktionen (Berlin: Georg Reimer, 1864).
8Schoenberg, I. J.. On polynomial interpolation at the points of a geometric progression. Proc. Roy. Soc. Edinburgh Sect. A 90 (1981), 195207.
9Stirling, James. The differential method or a Treatise concerning summation and interpolation of infinite series (London: E. Cave, 1749). (Translation by F. Holliday of the original Latin edition of 1730.)
10Stancu, D. D.. The remainder of certain linear approximation formulas in two variables. SIAM J. Numer. Anal. Ser. B 1 (1964), 137163.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Royal Society of Edinburgh Section A: Mathematics
  • ISSN: 0308-2105
  • EISSN: 1473-7124
  • URL: /core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed