Skip to main content Accessibility help

Solutions to a model for interface motion by interface diffusion

  • Hans-Dieter Alber (a1) and Peicheng Zhu (a2)


Existence of weak solutions is proved for a phase field model describing an interface in an elastically deformable solid, which moves by diffusion of atoms along the interface. The volume of the different regions separated by the interface is conserved, since no exchange of atoms across the interface occurs. The diffusion is driven only by reduction of the bulk free energy. The evolution of the order parameter in this model is governed by a degenerate parabolic fourth-order equation. If a regularizing parameter in this equation tends to zero, then solutions tend to solutions of a sharp interface model for interface diffusion. The existence proof is valid only for a 1½-dimensional situation.


Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Royal Society of Edinburgh Section A: Mathematics
  • ISSN: 0308-2105
  • EISSN: 1473-7124
  • URL: /core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed