Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T02:18:34.469Z Has data issue: false hasContentIssue false

Topological volumes of fibrations: a note on open covers

Published online by Cambridge University Press:  11 October 2021

Clara Löh
Affiliation:
Fakultät für Mathematik, Universität Regensburg, Regensburg, Germany (clara.loeh@ur.de, marco.moraschini@ur.de)
Marco Moraschini
Affiliation:
Fakultät für Mathematik, Universität Regensburg, Regensburg, Germany (clara.loeh@ur.de, marco.moraschini@ur.de)

Abstract

We establish a straightforward estimate for the number of open sets with fundamental group constraints needed to cover the total space of fibrations. This leads to vanishing results for simplicial volume and minimal volume entropy, e.g., for certain mapping tori.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agol, I.. Criteria for virtual fibering. J. Topol. 1 (2008), 269284.CrossRefGoogle Scholar
Agol, I.. The virtual Haken conjecture. Documenta Math. 18 (2013), 10451087.Google Scholar
Babenko, I. and Sabourau, S., Volume entropy semi-norm. https://arxiv.org/abs/1909.10803, 2019.Google Scholar
Babenko, I. and Sabourau, S., Minimal volume entropy and fiber growth. https://arxiv.org/abs/2102.04551, 2021.Google Scholar
Babenko, I. K.. Asymptotic invariants of smooth manifolds. Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), 707751.Google Scholar
Babenko, I. K.. Asymptotic volumes and simply connected surgeries of smooth manifolds. Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), 218221.Google Scholar
Besson, G., Courtois, G. and Gallot, S.. Volume et entropie minimale des espaces localement symétriques. Invent. Math. 103 (1991), 417445.CrossRefGoogle Scholar
Bregman, C. and Clay, M., Minimal volume entropy of free-by-cyclic groups and $2$-dimensional right-angled artin groups. https://arxiv.org/abs/2008.08504, 2020.Google Scholar
Brunnbauer, M.. Homological invariance for asymptotic invariants and systolic inequalities. Geom. Funct. Anal. 18 (2008), 10871117.CrossRefGoogle Scholar
Bucher, M. and Neofytidis, C.. The simplicial volume of mapping tori of $3$-manifolds. Math. Ann. 376 (2020), 14291447.CrossRefGoogle Scholar
Bucher-Karlsson, M.. Simplicial volume of locally symmetric spaces covered by $SL_3\mathbb {R}/SO(3)$. Geom. Dedicata 125 (2007), 203224.CrossRefGoogle Scholar
Capovilla, P., Löh, C. and Moraschini, M., Amenable category and complexity. https://arxiv.org/pdf/2012.00612.pdf, to appear in Algebr. Geom. Topol.Google Scholar
Connell, C. and Wang, S.. Positivity of simplicial volume for nonpositively curved manifolds with a Ricci-type curvature condition. Groups Geom. Dyn. 13 (2019), 10071034.CrossRefGoogle Scholar
Cornea, O.. Cone-decompositions and degenerate critical points. Proc. Lond. Math. Soc. 77 (1998), 437461.CrossRefGoogle Scholar
Cornea, O., Lupton, G., Oprea, J. and Tanré, D., Lusternik-Schnirelmann category, Mathematical Surveys and Monographs, Vol. 103 (American Mathematical Society, Providence, RI, 2003).CrossRefGoogle Scholar
de la Harpe, P., Uniform growth in groups of exponential growth. In Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part II (Haifa, 2000), Vol. 95, pp. 1–17, 2002.CrossRefGoogle Scholar
Delzant, T. and Steenbock, M.. Product set growth in groups and hyperbolic geometry. J. Topol. 13 (2020), 11831215.CrossRefGoogle Scholar
Eilenberg, S. and Ganea, T.. On the Lusternik-Schnirelmann category of abstract groups. Ann. of Math. (2) 65 (1957), 517518.CrossRefGoogle Scholar
Farber, M., Invitation to Topological Robotics, Vol. 8 EMS Zürich Lectures in Advanced Mathematics. European Mathematical Society, 2008.CrossRefGoogle Scholar
Fox, R. H.. On the Lusternik-Schnirelmann category. Ann. Math. 42 (1941), 333370.CrossRefGoogle Scholar
Frigerio, R. and Moraschini, M., Gromov's theory of multicomplexes with applications to bounded cohomology and simplicial volume. https://arxiv.org/pdf/1808.07307.pdf, to appear in Mem. Amer. Math. Soc.Google Scholar
Gómez-Larrañaga, J., González-Acuña, F. and Heil, W.. Categorical group invariants of $3$-manifolds. Manuscripta Math. 145 (2014), 433448.CrossRefGoogle Scholar
Gromov, M.. Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. (), –.Google Scholar
Gromov, M.. Volume and bounded cohomology. Publ. Math. Inst. Hautes Études Sci. 56 (1982), 599.Google Scholar
Hardie, K. A.. A note on fibrations and category. Michigan Math. J. 17 (1970), 351352.CrossRefGoogle Scholar
Inoue, H. and Yano, K.. The Gromov invariant of negatively curved manifolds. Topology 21 (1982), 8389.CrossRefGoogle Scholar
Ivanov, N. V., Leary theorems in bounded cohomology theory. https://arxiv.org/pdf/2012.08038.pdf.Google Scholar
Ivanov, N. V., Foundations of the theory of bounded cohomology. Vol. 143, pp. 69–109, 177–178. 1985. Studies in topology, V.Google Scholar
James, I.. On category, in the sense of Lusternik-Schnirelmann. Topology 17 (1978), 331348.CrossRefGoogle Scholar
Katok, A.. Entropy and closed geodesics. Ergodic Theory Dynam. Syst. 2 (1982), 339365.CrossRefGoogle Scholar
Kolpakov, A., Riolo, S. and Slavich, L., Embedding non-arithmetic hyperbolic manifolds. https://arxiv.org/pdf/2003.01707.pdf, to appear in Math. Res. Lett.Google Scholar
Lafont, J. F. and Schmidt, B.. Simplicial volume of closed locally symmetric spaces of non-compact type. Acta Math. 197 (2006), 129143.CrossRefGoogle Scholar
Löh, C. and Sauer, R.. Bounded cohomology of amenable covers via classifying spaces. Enseign. Math. 66 (2020), 147168.CrossRefGoogle Scholar
Long, D. D. and Reid, A. W.. Constructing hyperbolic manifolds which bound geometrically. Math. Res. Lett. 8 (2001), 443455.CrossRefGoogle Scholar
Lück, W., $L2$-Invariants: Theory and Applications to Geometry and $K$-Theory, Vol. 44, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. (Springer-Verlag, Berlin, 2002).Google Scholar
Lusternik, L. and Schnirelmann, L.. Méthodes Topologiques dans les Problèmes Variationnels (Paris: Hermann & Cie., 1934).Google Scholar
Mineyev, I.. Bounded cohomology characterizes hyperbolic groups. Quart. J. Math. 53 (2002), 5973.CrossRefGoogle Scholar
Pieroni, E., Minimal entropy of $3$-manifolds. https://arxiv.org/pdf/1902.09190.pdf.Google Scholar
Shalen, P. and Wagreich, P.. Growth rates, $ {\mathbb {Z}}_p$-homology, and volumes of hyperbolic $3$-manifolds. Trans. Amer. Math. Soc. 331 (1992), 895917.Google Scholar
Smale, S.. On the topology of algorithms I. J. Complex. 3 (1987), 8189.CrossRefGoogle Scholar
Suárez-Serrato, P.. Minimal entropy and geometric decompositions in dimension four. Algebr. Geom. Topol. 9 (2009), 365395.CrossRefGoogle Scholar
Thurston, W. P.. The geometry and topology of 3-manifolds (Princeton, 1979). mimeographed notes. Available online at: http://library.msri.org/books/gt3m/.Google Scholar
Varadarajan, K.. On fibrations and category. Math. Z. 88 (1965), 267273.CrossRefGoogle Scholar
Vasilév, V., Complements of discriminants of smooth maps: topology and applications, Transl. from the Russian by B. Goldfarb. Transl. ed. by S. Gelfand (American Mathematical Society, Providence, RI, 1992).Google Scholar