Skip to main content
×
Home
    • Aa
    • Aa

Travelling-waves for the FKPP equation via probabilistic arguments

  • Simon C. Harris (a1)
Abstract

We outline a completely probabilistic study of travelling-wave solutions of the FKPP reaction-diffusion equation that are monotone and connect 0 to 1. The necessary asymptotics of such travelling-waves are proved using martingale and Brownian motion techniques. Recalling the connection between the FKPP equation and branching Brownian motion through the work of McKean and Neveu, we show how the necessary asymptotics and results about branching Brownian motion combine to give the existence and uniqueness of travelling waves of all speeds greater than or equal to the critical speed.

Copyright
References
Hide All
1Asmussen S. and Hering H.. Branching processes. Progress in Probability and Statistics (Boston: Birkhäuser, 1983).
2Athreya K. and Ney P.. Branching processes (Springer, 1972).
3Biggins J. D.. Martingale convergence in the branching random walk. J. Appl. Prob. 14 (1977), 2537.
4Biggins J. D.. Growth rates in the branching random walk. Z. Wahr. 48 (1979), 1734.
5Biggins J. D.. Uniform convergence of martingales in the branching random walk. Ann. Prob. 20 (1992), 137151.
6Bramson M. D.. Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31 (1978), 531581.
7A. Champneys, Harris S. C., Toland J. F., Warren J. and Williams D.. Analysis, algebra and probability for a coupled system of reaction-diffusion equations. Phil. Trans. R. Soc. Lond. A 350 (1995), 69112.
8Chauvin B.. Product martingales and stopping lines for branching Brownian motion. Ann. Prob. 19 (1991), 11961205.
9Elworthy K. D., Truman A., Zhao H. Z. and Gaines J. G.. Approximate travelling waves for generalised KPP equations and classical mechanics. Proc. R. Soc. Lond. A 446 (1994), 529554.
10Fisher R. A.. The wave of advance of an advantageous gene. Ann. Eugenics 7 (1937), 353369.
11Friedlin M.. Functional integration and partial differential equations. Annals of Mathematics Series, vol. 109 (Princeton University Press, 1985).
12Harris S. C. and Williams D.. Large-deviations and martingales for a typed branching diffusion. I. Astérisque 236 (1996), 133154.
13Kolmogorov A. N., Petrowski I. and Piscounov N.. Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un probleme biologique. Mosc. Univ. Bull. Math. 1 (1937), 125.
14McKean H. P.. Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov. Commun. Pure Appl. Math. 28 (1975), 323331.
15McKean H. P.. Correction to the above. Commun. Pure Appl. Math. 29 (1976), 553554.
16Neveu J.. Multiplicative martingales for spatial branching processes. Seminar on stochastic processes (ed. Çinlar E., Chung K. L and Getoor R. K.). Prog. Prob. Statist. 15, 223241 (Boston: Birkhauser, 1987).
17Rogers L. C. G. and Williams D.. Diffusions, Markov processes and martingales, vol. 1. Foundations (new edn) (Chichester and New York: Wiley, 1994).
18Rogers L. C. G. and Williams D.. Diffusions, Markov processes and martingales, vol. 2. ltôcalculus (Chichester and New York: Wiley, 1987).
19Shiga T. and Watanabe S.. Bessel diffusions as a one-parameter family of diffusion processes. Z. Wahr. verw. Geb. 27 (1973), 3746.
20Uchiyama K.. Brownian first exit and sojourn over a one-sided moving boundary and applications. Z. Wahr. 54 (1981), 75116.
21Uchiyama K.. Spatial growth of a branching process of particles living in ℝd. Ann. Prob. 10 (1982), 896918.
22Watanabe S.. Limit theorems for a class of branching processes. In Markov processes and potential theory (ed. Chover J.), pp. 205232 (New York: Wiley, 1967).
23Zhao H. Z. and Elworthy K. D.. The travelling wave solutions of scalar generalised KPP equation via classical mechanics and stochastic approaches. In Stochastics and quantum mechanics (ed. Truman A. and Davies I. M.), pp. 298316 (Singapore, New Jersey, London and Hong Kong: World Scientific, 1992).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Royal Society of Edinburgh Section A: Mathematics
  • ISSN: 0308-2105
  • EISSN: 1473-7124
  • URL: /core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 114 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.