Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-16T00:32:38.462Z Has data issue: false hasContentIssue false

A variational approach to a nonlinear Steklov problem

Published online by Cambridge University Press:  14 November 2011

B. Ermens
Affiliation:
Université de Louvain, Institut Mathématique, B-1348 Louvain-la Neuve, Belgium
J. Mawhin
Affiliation:
Université de Louvain, Institut Mathématique, B-1348 Louvain-la Neuve, Belgium

Synopsis

We study the Steklov problem which consists in finding a complex function w(z) = U(z) + iV(z) holomorphic in the open unit disc G of the complex plane, continuous on its closure, such that V(0) = 0 and verifying on its boundary the condition

(d/ds)V(eis)+g(s, U(eis))=h(s),

where g and h are given functions. Using the Hilbert transform, the problem is reduced to the search for periodic solutions of an equivalent singular integro-differential equation which is treated by the direct method of the calculus of variations. When g(s,.) is non-decreasing, we obtain a necessary and sufficient condition for the solvability. The case of a non-monotone nonlinearity is also considered.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Anane, A.. Etude des valeurs propres et de la résonance pour l'opérateur p-Laplacien (Thése de Doctorat, Université Libre de Bruxelles, 1988).Google Scholar
2Ermens, B.. Problèmes de Rieman-Hilbert nonlinéaries (Thèse de Doctorat, Université Catholique de Louvain, 1988).Google Scholar
3Fonda, A. and Gossez, J. P.. Semi coercive variational problems at resonance: an abstract approach. J. Differential and Integral Equations (to appear).Google Scholar
4Mawhin, J.. Semi-coercive monotone variational problems. Bull. Cl. Sci. Acad. R. Belgique (5) 73 (1987), 118130.Google Scholar
5Mawhin, J.. Problèmes de Dirichlet variationnels non linéaires, Semin. Math. Sup. 104 (Montreal: Presses de l'Université de Montréal, 1987).Google Scholar
6Mawhin, J. and Willem, M.. Critical Point Theory and Hamiltonian Systems, Appl. Math. Sci. 74 (New York: Springer, 1989).CrossRefGoogle Scholar
7Mawhin, J., Ward, J. R. and Willem, M.. Variational methods and semi-linear elliptic equations. Arch. Rational Mech. Anal. 95 (1986), 269277.CrossRefGoogle Scholar
8Rabinowitz, P. H.. Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Math. 65 (Providence, R.I.: American Mathematical Society, 1986).CrossRefGoogle Scholar
9Ramos, M. and Sanchez, L.. Variational problems involving noncoercive functionals (to appear).Google Scholar
10Smirnov, V.. Cours de Mathématiques supérieures, tome III, 2e partie (Moscow: Mir, 1972).Google Scholar
11Wolfersdorf, L. Von. On strongly nonlinear Poincaré boundary value problems for harmonic functions. A. Anal. Anw. 3 (1984), 385399.CrossRefGoogle Scholar
12Zygmund, A.. Trigonometric Series, 2nd edn. (Edinburgh: Cambridge University Press, 1988).Google Scholar