Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-11T13:41:13.674Z Has data issue: false hasContentIssue false

Abnormal dynamic functional connectivity of hippocampal subregions associated with working memory impairment in melancholic depression

Published online by Cambridge University Press:  06 December 2021

Lai Shunkai
Affiliation:
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Ting Su
Affiliation:
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
Shuming Zhong
Affiliation:
Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Guangmao Chen
Affiliation:
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
Yiliang Zhang
Affiliation:
Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Hui Zhao
Affiliation:
Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Pan Chen
Affiliation:
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
Guixian Tang
Affiliation:
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
Zhangzhang Qi
Affiliation:
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
Jiali He
Affiliation:
Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Yunxia Zhu
Affiliation:
Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Sihui Lv
Affiliation:
Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Zijin Song
Affiliation:
School of Management, Jinan University, Guangzhou 510316, China
Haofei Miao
Affiliation:
Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
Yilei Hu
Affiliation:
School of Management, Jinan University, Guangzhou 510316, China
Yanbin Jia*
Affiliation:
Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Ying Wang*
Affiliation:
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
*
Author for correspondence: Ying Wang, E-mail: johneil@vip.sina.com; Yanbin Jia, E-mail: yanbinjia2006@163.com
Author for correspondence: Ying Wang, E-mail: johneil@vip.sina.com; Yanbin Jia, E-mail: yanbinjia2006@163.com

Abstract

Background

Previous studies have demonstrated structural and functional changes of the hippocampus in patients with major depressive disorder (MDD). However, no studies have analyzed the dynamic functional connectivity (dFC) of hippocampal subregions in melancholic MDD. We aimed to reveal the patterns for dFC variability in hippocampus subregions – including the bilateral rostral and caudal areas and its associations with cognitive impairment in melancholic MDD.

Methods

Forty-two treatment-naive MDD patients with melancholic features and 55 demographically matched healthy controls were included. The sliding-window analysis was used to evaluate whole-brain dFC for each hippocampal subregions seed. We assessed between-group differences in the dFC variability values of each hippocampal subregion in the whole brain and cognitive performance on the MATRICS Consensus Cognitive Battery (MCCB). Finally, association analysis was conducted to investigate their relationships.

Results

Patients with melancholic MDD showed decreased dFC variability between the left rostral hippocampus and left anterior lobe of cerebellum compared with healthy controls (voxel p < 0.005, cluster p < 0.0125, GRF corrected), and poorer cognitive scores in working memory, verbal learning, visual learning, and social cognition (all p < 0.05). Association analysis showed that working memory was positively correlated with the dFC variability values of the left rostral hippocampus-left anterior lobe of the cerebellum (r = 0.338, p = 0.029) in melancholic MDD.

Conclusions

These findings confirmed the distinct dynamic functional pathway of hippocampal subregions in patients with melancholic MDD, and suggested that the dysfunction of hippocampus-cerebellum connectivity may be underlying the neural substrate of working memory impairment in melancholic MDD.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Lai Shunkai and Ting Su contributed equally to this work.

References

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 24(3), 663676. doi: 10.1093/cercor/bhs352CrossRefGoogle ScholarPubMed
Anacker, C., & Hen, R. (2017). Adult hippocampal neurogenesis and cognitive flexibility – linking memory and mood. Nature Reviews Neuroscience, 18(6), 335346. doi: 10.1038/nrn.2017.45CrossRefGoogle ScholarPubMed
Austin, M. P., Mitchell, P., & Goodwin, G. M. (2001). Cognitive deficits in depression: Possible implications for functional neuropathology. British Journal of Psychiatry, 178, 200206. doi: 10.1192/bjp.178.3.200CrossRefGoogle ScholarPubMed
Austin, M. P., Mitchell, P., Wilhelm, K., Parker, G., Hickie, I., Brodaty, H., … Hadzi-Pavlovic, D. (1999). Cognitive function in depression: A distinct pattern of frontal impairment in melancholia? Psychological Medicine, 29(1), 7385. doi: 10.1017/s0033291798007788CrossRefGoogle ScholarPubMed
Bai, F., Xie, C., Watson, D. R., Shi, Y., Yuan, Y., Wang, Y., … Zhang, Z. (2011). Aberrant hippocampal subregion networks associated with the classifications of aMCI subjects: A longitudinal resting-state study. PLoS One, 6(12), e29288. doi: 10.1371/journal.pone.0029288CrossRefGoogle ScholarPubMed
Ballmaier, M., Narr, K. L., Toga, A. W., Elderkin-Thompson, V., Thompson, P. M., Hamilton, L., … Kumar, A. (2008). Hippocampal morphology and distinguishing late-onset from early-onset elderly depression. American Journal of Psychiatry, 165(2), 229237. doi: 10.1176/appi.ajp.2007.07030506CrossRefGoogle ScholarPubMed
Beneventi, H., Barndon, R., Ersland, L., & Hugdahl, K. (2007). An fMRI study of working memory for schematic facial expressions. Scandinavian Journal of Psychology, 48(2), 8186. doi: 10.1111/j.1467-9450.2007.00536.xCrossRefGoogle ScholarPubMed
Bohne, P., Schwarz, M. K., Herlitze, S., & Mark, M. D. (2019). A new projection from the deep cerebellar nuclei to the hippocampus via the ventrolateral and laterodorsal thalamus in mice. Frontiers in Neural Circuits, 13, 51. doi: 10.3389/fncir.2019.00051CrossRefGoogle Scholar
Boran, E., Fedele, T., Klaver, P., Hilfiker, P., Stieglitz, L., Grunwald, T., & Sarnthein, J. (2019). Persistent hippocampal neural firing and hippocampal-cortical coupling predict verbal working memory load. Science Advances, 5(3), eaav3687. doi: 10.1126/sciadv.aav3687CrossRefGoogle ScholarPubMed
Bosaipo, N. B., Foss, M. P., Young, A. H., & Juruena, M. F. (2017). Neuropsychological changes in melancholic and atypical depression: A systematic review. Neuroscience & Biobehavioral Reviews, 73, 309325. doi: 10.1016/j.neubiorev.2016.12.014CrossRefGoogle ScholarPubMed
Braun, U., Schafer, A., Walter, H., Erk, S., Romanczuk-Seiferth, N., Haddad, L., … Bassett, D. S. (2015). Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proceedings of the National Academy of Sciences of the United States of America, 112(37), 1167811683. doi: 10.1073/pnas.1422487112CrossRefGoogle ScholarPubMed
Bray, S., Arnold, A. E., Levy, R. M., & Iaria, G. (2015). Spatial and temporal functional connectivity changes between resting and attentive states. Human Brain Mapping, 36(2), 549565. doi: 10.1002/hbm.22646CrossRefGoogle ScholarPubMed
Bremner, J. D., Vythilingam, M., Vermetten, E., Vaccarino, V., & Charney, D. S. (2004). Deficits in hippocampal and anterior cingulate functioning during verbal declarative memory encoding in midlife major depression. American Journal of Psychiatry, 161(4), 637645. doi: 10.1176/appi.ajp.161.4.637CrossRefGoogle ScholarPubMed
Burgess, N., Maguire, E. A., & O'Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625641. doi: 10.1016/s0896-6273(02)00830-9CrossRefGoogle ScholarPubMed
Caldieraro, M. A., Baeza, F. L., Pinheiro, D. O., Ribeiro, M. R., Parker, G., & Fleck, M. P. (2013). Clinical differences between melancholic and nonmelancholic depression as defined by the CORE system. Comprehensive Psychiatry, 54(1), 1115. doi: 10.1016/j.comppsych.2012.05.012CrossRefGoogle ScholarPubMed
Cao, X., Liu, Z., Xu, C., Li, J., Gao, Q., Sun, N., … Zhang, K. (2012). Disrupted resting-state functional connectivity of the hippocampus in medication-naive patients with major depressive disorder. Journal of Affective Disorders, 141(2–3), 194203. doi: 10.1016/j.jad.2012.03.002CrossRefGoogle ScholarPubMed
Cardoner, N., Soria, V., Gratacos, M., Hernandez-Ribas, R., Pujol, J., Lopez-Sola, M., … Soriano-Mas, C. (2013). Val66Met BDNF genotypes in melancholic depression: Effects on brain structure and treatment outcome. Depression and Anxiety, 30(3), 225233. doi: 10.1002/da.22025CrossRefGoogle ScholarPubMed
Carr, V. A., Rissman, J., & Wagner, A. D. (2010). Imaging the human medial temporal lobe with high-resolution fMRI. Neuron, 65(3), 298308. doi: 10.1016/j.neuron.2009.12.022CrossRefGoogle ScholarPubMed
Chen, J., Wei, Z., Han, H., Jin, L., Xu, C., Dong, D., … Peng, Z. (2019). An effect of chronic stress on prospective memory via alteration of resting-state hippocampal subregion functional connectivity. Scientific Reports, 9(1), 19698. doi: 10.1038/s41598-019-56111-9CrossRefGoogle ScholarPubMed
Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16(9), 13481355. doi: 10.1038/nn.3470CrossRefGoogle ScholarPubMed
Collins, P. Y., Patel, V., Joestl, S. S., March, D., Insel, T. R., Daar, A. S., … Stein, D. J. (2011). Grand challenges in global mental health. Nature, 475(7354), 2730. doi: 10.1038/475027aCrossRefGoogle ScholarPubMed
Day, C. V., Gatt, J. M., Etkin, A., DeBattista, C., Schatzberg, A. F., & Williams, L. M. (2015). Cognitive and emotional biomarkers of melancholic depression: An iSPOT-D report. Journal of Affective Disorders, 176, 141150. doi: 10.1016/j.jad.2015.01.061CrossRefGoogle ScholarPubMed
Dehaene, S., Naccache, L., Cohen, L., Bihan, D. L., Mangin, J. F., Poline, J. B., & Riviere, D. (2001). Cerebral mechanisms of word masking and unconscious repetition priming. Nature Neuroscience, 4(7), 752758. doi: 10.1038/89551CrossRefGoogle ScholarPubMed
Demirtas, M., Tornador, C., Falcon, C., Lopez-Sola, M., Hernandez-Ribas, R., Pujol, J., … Deco, G. (2016). Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder. Human Brain Mapping, 37(8), 29182930. doi: 10.1002/hbm.23215CrossRefGoogle ScholarPubMed
Douw, L., Wakeman, D. G., Tanaka, N., Liu, H., & Stufflebeam, S. M. (2016). State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility. Neuroscience, 339, 1221. doi: 10.1016/j.neuroscience.2016.09.034CrossRefGoogle ScholarPubMed
Drevets, W. C. (2000). Neuroimaging studies of mood disorders. Biological Psychiatry, 48(8), 813829. doi: 10.1016/s0006-3223(00)01020-9CrossRefGoogle ScholarPubMed
Duckworth, K. (2015). Understanding mental disorders: Your guide to DSM-5. American Journal of Psychiatry, 172(9), 916916. doi: 10.1176/appi.ajp.2015.15070879CrossRefGoogle Scholar
Duval, F., Mokrani, M. C., Monreal-Ortiz, J. A., Fattah, S., Champeval, C., Schulz, P., & Macher, J. P. (2006). Cortisol hypersecretion in unipolar major depression with melancholic and psychotic features: Dopaminergic, noradrenergic and thyroid correlates. Psychoneuroendocrinology, 31(7), 876888. doi: 10.1016/j.psyneuen.2006.04.003CrossRefGoogle ScholarPubMed
Eichenbaum, H. (2014). Time cells in the hippocampus: A new dimension for mapping memories. Nature Reviews Neuroscience, 15(11), 732744. doi: 10.1038/nrn3827CrossRefGoogle ScholarPubMed
Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., … Jiang, T. (2016). The human brainnetome atlas: A new brain atlas based on connectional architecture. Cerebral Cortex, 26(8), 35083526. doi: 10.1093/cercor/bhw157CrossRefGoogle Scholar
Fateh, A. A., Long, Z., Duan, X., Cui, Q., Pang, Y., Farooq, M. U., … Chen, H. (2019). Hippocampal functional connectivity-based discrimination between bipolar and major depressive disorders. Psychiatry Research Neuroimaging, 284, 5360. doi: 10.1016/j.pscychresns.2019.01.004CrossRefGoogle ScholarPubMed
Felger, J. C., Li, Z., Haroon, E., Woolwine, B. J., Jung, M. Y., Hu, X., & Miller, A. H. (2016). Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Molecular Psychiatry, 21(10), 13581365. doi: 10.1038/mp.2015.168CrossRefGoogle ScholarPubMed
Figueroa, C. A., Mocking, R. J. T., van Wingen, G., Martens, S., Ruhe, H. G., & Schene, A. H. (2017). Aberrant default-mode network-hippocampus connectivity after sad memory-recall in remitted-depression. Social Cognitive and Affective Neuroscience, 12(11), 18031813. doi: 10.1093/scan/nsx108CrossRefGoogle ScholarPubMed
Frodl, T., Schaub, A., Banac, S., Charypar, M., Jager, M., Kummler, P., … Meisenzahl, E. M. (2006). Reduced hippocampal volume correlates with executive dysfunctioning in major depression. Journal of Psychiatry and Neuroscience, 31(5), 316323.Google ScholarPubMed
Greenberg, D. L., Payne, M. E., MacFall, J. R., Steffens, D. C., & Krishnan, R. R. (2008). Hippocampal volumes and depression subtypes. Psychiatry Research, 163(2), 126132. doi: 10.1016/j.pscychresns.2007.12.009CrossRefGoogle ScholarPubMed
Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 21(4), 424430. doi: 10.1097/WCO.0b013e328306f2c5CrossRefGoogle ScholarPubMed
Guell, X., Gabrieli, J. D. E., & Schmahmann, J. D. (2018). Triple representation of language, working memory, social and emotion processing in the cerebellum: Convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. Neuroimage, 172, 437449. doi: 10.1016/j.neuroimage.2018.01.082CrossRefGoogle Scholar
Guo, W., Liu, F., Dai, Y., Jiang, M., Zhang, J., Yu, L., … Xiao, C. (2013). Decreased interhemispheric resting-state functional connectivity in first-episode, drug-naive major depressive disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 41, 2429. doi: 10.1016/j.pnpbp.2012.11.003CrossRefGoogle ScholarPubMed
Hakamata, Y., Komi, S., Sato, E., Izawa, S., Mizukami, S., Moriguchi, Y., … Tagaya, H. (2019). Cortisol-related hippocampal-extrastriate functional connectivity explains the adverse effect of cortisol on visuospatial retrieval. Psychoneuroendocrinology, 109, 104310. doi: 10.1016/j.psyneuen.2019.04.013CrossRefGoogle ScholarPubMed
Han, X., Wu, X., Wang, Y., Sun, Y., Ding, W., Cao, M., … Zhou, Y. (2018). Alterations of resting-state static and dynamic functional connectivity of the dorsolateral prefrontal cortex in subjects with internet gaming disorder. Frontiers in Human Neuroscience, 12, 41. doi: 10.3389/fnhum.2018.00041CrossRefGoogle ScholarPubMed
Hao, Z. Y., Zhong, Y., Ma, Z. J., Xu, H. Z., Kong, J. Y., Wu, Z., … Wang, C. (2020). Abnormal resting-state functional connectivity of hippocampal subfields in patients with major depressive disorder. BMC Psychiatry, 20(1), 71. doi: 10.1186/s12888-020-02490-7CrossRefGoogle ScholarPubMed
Hautzel, H., Mottaghy, F. M., Specht, K., Muller, H. W., & Krause, B. J. (2009). Evidence of a modality-dependent role of the cerebellum in working memory? An fMRI study comparing verbal and abstract n-back tasks. Neuroimage, 47(4), 20732082. doi: 10.1016/j.neuroimage.2009.06.005CrossRefGoogle ScholarPubMed
Hayter, A. L., Langdon, D. W., & Ramnani, N. (2007). Cerebellar contributions to working memory. Neuroimage, 36(3), 943954. doi: 10.1016/j.neuroimage.2007.03.011CrossRefGoogle ScholarPubMed
Hellyer, P. J., Jachs, B., Clopath, C., & Leech, R. (2016). Local inhibitory plasticity tunes macroscopic brain dynamics and allows the emergence of functional brain networks. Neuroimage, 124(Pt A), 8595. doi: 10.1016/j.neuroimage.2015.08.069CrossRefGoogle ScholarPubMed
Hickie, I., Naismith, S., Ward, P. B., Turner, K., Scott, E., Mitchell, P., … Parker, G. (2005). Reduced hippocampal volumes and memory loss in patients with early- and late-onset depression. British Journal of Psychiatry, 186, 197202. doi: 10.1192/bjp.186.3.197CrossRefGoogle ScholarPubMed
Huang, Y., Wang, Y., Wang, H., Liu, Z., Yu, X., Yan, J., … Wu, Y. (2019). Prevalence of mental disorders in China: A cross-sectional epidemiological study. The Lancet. Psychiatry, 6(3), 211224. doi: 10.1016/S2215-0366(18)30511-XCrossRefGoogle Scholar
Hyett, M. P., Breakspear, M. J., Friston, K. J., Guo, C. C., & Parker, G. B. (2015). Disrupted effective connectivity of cortical systems supporting attention and interoception in melancholia. JAMA Psychiatry, 72(4), 350358. doi: 10.1001/jamapsychiatry.2014.2490CrossRefGoogle ScholarPubMed
Igloi, K., Doeller, C. F., Paradis, A. L., Benchenane, K., Berthoz, A., Burgess, N., & Rondi-Reig, L. (2015). Interaction between hippocampus and cerebellum crus I in sequence-based but not place-based navigation. Cerebral Cortex, 25(11), 41464154. doi: 10.1093/cercor/bhu132CrossRefGoogle Scholar
Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825841. doi: 10.1016/s1053-8119(02)91132-8CrossRefGoogle ScholarPubMed
Jeon, H. J., Peng, D., Chua, H. C., Srisurapanont, M., Fava, M., Bae, J. N., … Hong, J. P. (2013). Melancholic features and hostility are associated with suicidality risk in Asian patients with major depressive disorder. Journal of Affective Disorders, 148(2-3), 368374. doi: 10.1016/j.jad.2013.01.001CrossRefGoogle ScholarPubMed
Kaestner, F., Hettich, M., Peters, M., Sibrowski, W., Hetzel, G., Ponath, G., … Rothermundt, M. (2005). Different activation patterns of proinflammatory cytokines in melancholic and non-melancholic major depression are associated with HPA axis activity. Journal of Affective Disorders, 87(2-3), 305311. doi: 10.1016/j.jad.2005.03.012CrossRefGoogle ScholarPubMed
Kaiser, R. H., Whitfield-Gabrieli, S., Dillon, D. G., Goer, F., Beltzer, M., Minkel, J., … Pizzagalli, D. A. (2016). Dynamic resting-state functional connectivity in major depression. Neuropsychopharmacology, 41(7), 18221830. doi: 10.1038/npp.2015.352CrossRefGoogle ScholarPubMed
Karlovic, D., Serretti, A., Vrkic, N., Martinac, M., & Marcinko, D. (2012). Serum concentrations of CRP, IL-6, TNF-alpha and cortisol in major depressive disorder with melancholic or atypical features. Psychiatry Research, 198(1), 7480. doi: 10.1016/j.psychres.2011.12.007CrossRefGoogle ScholarPubMed
Khan, S. A., Ryali, V., Bhat, P. S., Prakash, J., Srivastava, K., & Khanam, S. (2015). The hippocampus and executive functions in depression. Industrial Psychiatry Journal, 24(1), 1822. doi: 10.4103/0972-6748.160920CrossRefGoogle ScholarPubMed
Kim, H. (2019). Neural activity during working memory encoding, maintenance, and retrieval: A network-based model and meta-analysis. Human Brain Mapping, 40(17), 49124933. doi: 10.1002/hbm.24747CrossRefGoogle ScholarPubMed
Knight, M. J., & Baune, B. T. (2017). Psychosocial dysfunction in major depressive disorder-rationale, design, and characteristics of the cognitive and emotional recovery training program for depression (CERT-D). Frontiers in Psychiatry, 8, 280. doi: 10.3389/fpsyt.2017.00280CrossRefGoogle ScholarPubMed
Knight, M. J., & Baune, B. T. (2019). Social cognitive abilities predict psychosocial dysfunction in major depressive disorder. Depression and Anxiety, 36(1), 5462. doi: 10.1002/da.22844CrossRefGoogle ScholarPubMed
Kucyi, A., Hove, M. J., Esterman, M., Hutchison, R. M., & Valera, E. M. (2017). Dynamic brain network correlates of spontaneous fluctuations in attention. Cerebral Cortex, 27(3), 18311840. doi: 10.1093/cercor/bhw029Google ScholarPubMed
Kuper, M., Kaschani, P., Thurling, M., Stefanescu, M. R., Burciu, R. G., Goricke, S., … Timmann, D. (2016). Cerebellar fMRI activation increases with increasing working memory demands. Cerebellum, 15(3), 322335. doi: 10.1007/s12311-015-0703-7CrossRefGoogle ScholarPubMed
Lamers, F., Vogelzangs, N., Merikangas, K. R., de Jonge, P., Beekman, A. T., & Penninx, B. W. (2013). Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression. Molecular Psychiatry, 18(6), 692699. doi: 10.1038/mp.2012.144CrossRefGoogle ScholarPubMed
Lazarov, A., Zhu, X., Suarez-Jimenez, B., Rutherford, B. R., & Neria, Y. (2017). Resting-state functional connectivity of anterior and posterior hippocampus in posttraumatic stress disorder. Journal of Psychiatric Research, 94, 1522. doi: 10.1016/j.jpsychires.2017.06.003CrossRefGoogle ScholarPubMed
LeMoult, J., Joormann, J., Sherdell, L., Wright, Y., & Gotlib, I. H. (2009). Identification of emotional facial expressions following recovery from depression. Journal of Abnormal Psychology, 118(4), 828833. doi: 10.1037/a0016944CrossRefGoogle ScholarPubMed
Leonardi, N., & Van De Ville, D. (2015). On spurious and real fluctuations of dynamic functional connectivity during rest. NeuroImage, 104, 430436. doi: 10.1016/j.neuroimage.2014.09.007CrossRefGoogle ScholarPubMed
Li, J., Duan, X., Cui, Q., Chen, H., & Liao, W. (2019). More than just statics: Temporal dynamics of intrinsic brain activity predicts the suicidal ideation in depressed patients. Psychological Medicine, 49(5), 852860. doi: 10.1017/S0033291718001502CrossRefGoogle ScholarPubMed
Liang, S., Yu, W., Ma, X., Luo, S., Zhang, J., Sun, X., … Zhang, Y. (2020). Psychometric properties of the MATRICS consensus cognitive battery (MCCB) in Chinese patients with major depressive disorder. Journal of Affective Disorders, 265, 132138. doi: 10.1016/j.jad.2020.01.052CrossRefGoogle ScholarPubMed
Liao, W., Li, J., Duan, X., Cui, Q., Chen, H., & Chen, H. (2018). Static and dynamic connectomics differentiate between depressed patients with and without suicidal ideation. Human Brain Mapping, 39(10), 41054118. doi: 10.1002/hbm.24235CrossRefGoogle ScholarPubMed
Liao, W., Wu, G. R., Xu, Q., Ji, G. J., Zhang, Z., Zang, Y. F., & Lu, G. (2014). DynamicBC: A MATLAB toolbox for dynamic brain connectome analysis. Brain Connectivity, 4(10), 780790. doi: 10.1089/brain.2014.0253CrossRefGoogle ScholarPubMed
Lin, K., Xu, G., Lu, W., Ouyang, H., Dang, Y., Lorenzo-Seva, U., … Lee, T. M. (2014). Neuropsychological performance in melancholic, atypical and undifferentiated major depression during depressed and remitted states: A prospective longitudinal study. Journal of Affective Disorders, 168, 184191. doi: 10.1016/j.jad.2014.06.032CrossRefGoogle ScholarPubMed
Linden, S. C., Jackson, M. C., Subramanian, L., Healy, D., & Linden, D. E. (2011). Sad benefit in face working memory: An emotional bias of melancholic depression. Journal of Affective Disorders, 135(1-3), 251257. doi: 10.1016/j.jad.2011.08.002CrossRefGoogle ScholarPubMed
Long, Y., Cao, H., Yan, C., Chen, X., Li, L., Castellanos, F. X., … Liu, Z. (2020). Altered resting-state dynamic functional brain networks in major depressive disorder: Findings from the REST-meta-MDD consortium. Neuroimage Clinical, 26, 102163. doi: 10.1016/j.nicl.2020.102163CrossRefGoogle ScholarPubMed
Malivoire, B. L., Girard, T. A., Patel, R., & Monson, C. M. (2018). Functional connectivity of hippocampal subregions in PTSD: Relations with symptoms. BMC Psychiatry, 18(1), 129. doi: 10.1186/s12888-018-1716-9CrossRefGoogle ScholarPubMed
Mathews, A., & MacLeod, C. (2005). Cognitive vulnerability to emotional disorders. Annual Review of Clinical Psychology, 1, 167195. doi: 10.1146/annurev.clinpsy.1.102803.143916CrossRefGoogle ScholarPubMed
McIntosh, A. R., Kovacevic, N., & Itier, R. J. (2008). Increased brain signal variability accompanies lower behavioral variability in development. PLOS Computational Biology, 4(7), e1000106. doi: 10.1371/journal.pcbi.1000106CrossRefGoogle ScholarPubMed
McIntyre, R. S., & Lee, Y. (2016). Cognition in major depressive disorder: A ‘systemically important functional index’ (SIFI). Current Opinion in Psychiatry, 29(1), 4855. doi: 10.1097/YCO.0000000000000221CrossRefGoogle ScholarPubMed
McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., & Moser, M. B. (2006). Path integration and the neural basis of the ‘cognitive map’. Nature Reviews Neuroscience, 7(8), 663678. doi: 10.1038/nrn1932CrossRefGoogle ScholarPubMed
Netrakanti, P. R., Cooper, B. H., Dere, E., Poggi, G., Winkler, D., Brose, N., & Ehrenreich, H. (2015). Fast cerebellar reflex circuitry requires synaptic vesicle priming by munc13-3. Cerebellum, 14(3), 264283. doi: 10.1007/s12311-015-0645-0CrossRefGoogle ScholarPubMed
Ng, H. B., Kao, K. L., Chan, Y. C., Chew, E., Chuang, K. H., & Chen, S. H. (2016). Modality specificity in the cerebro-cerebellar neurocircuitry during working memory. Behavioural Brain Research, 305, 164173. doi: 10.1016/j.bbr.2016.02.027CrossRefGoogle ScholarPubMed
Nguyen, T. T., Kovacevic, S., Dev, S. I., Lu, K., Liu, T. T., & Eyler, L. T. (2017). Dynamic functional connectivity in bipolar disorder is associated with executive function and processing speed: A preliminary study. Neuropsychology, 31(1), 7383. doi: 10.1037/neu0000317CrossRefGoogle ScholarPubMed
Nomi, J. S., Vij, S. G., Dajani, D. R., Steimke, R., Damaraju, E., Rachakonda, S., … Uddin, L. Q. (2017). Chronnectomic patterns and neural flexibility underlie executive function. Neuroimage, 147, 861871. doi: 10.1016/j.neuroimage.2016.10.026CrossRefGoogle ScholarPubMed
Onuki, Y., Van Someren, E. J., De Zeeuw, C. I., & Van der Werf, Y. D. (2015). Hippocampal-cerebellar interaction during spatio-temporal prediction. Cerebral Cortex, 25(2), 313321. doi: 10.1093/cercor/bht221CrossRefGoogle ScholarPubMed
O'Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N., & Johansen-Berg, H. (2010). Distinct and overlapping functional zones in the cerebellum defined by resting-state functional connectivity. Cerebral Cortex, 20(4), 953965. doi: 10.1093/cercor/bhp157CrossRefGoogle ScholarPubMed
Pan, Z., Park, C., Brietzke, E., Zuckerman, H., Rong, C., Mansur, R. B., … McIntyre, R. S. (2019). Cognitive impairment in major depressive disorder. CNS Spectrums, 24(1), 2229. doi: 10.1017/S1092852918001207CrossRefGoogle ScholarPubMed
Pang, Y., Zhang, H., Cui, Q., Yang, Q., Lu, F., Chen, H., … Chen, H. (2020). Combined static and dynamic functional connectivity signatures differentiating bipolar depression from major depressive disorder. Australian and New Zealand Journal of Psychiatry, 54(8), 832842. doi: 10.1177/0004867420924089CrossRefGoogle ScholarPubMed
Passot, J. B., Sheynikhovich, D., Duvelle, E., & Arleo, A. (2012). Contribution of cerebellar sensorimotor adaptation to hippocampal spatial memory. PLoS One, 7(4), e32560. doi: 10.1371/journal.pone.0032560CrossRefGoogle ScholarPubMed
Patas, K., Penninx, B. W., Bus, B. A., Vogelzangs, N., Molendijk, M. L., Elzinga, B. M., … Oude Voshaar, R. C. (2014). Association between serum brain-derived neurotrophic factor and plasma interleukin-6 in major depressive disorder with melancholic features. Brain, Behavior, and Immunity, 36, 7179. doi: 10.1016/j.bbi.2013.10.007CrossRefGoogle ScholarPubMed
Peng, W., Mao, L., Yin, D., Sun, W., Wang, H., Zhang, Q., … Wang, X. (2018). Functional network changes in the hippocampus contribute to depressive symptoms in epilepsy. Seizure, 60, 1622. doi: 10.1016/j.seizure.2018.06.001CrossRefGoogle ScholarPubMed
Peters, A. T., Jenkins, L. M., Stange, J. P., Bessette, K. L., Skerrett, K. A., Kling, L. R., … Langenecker, S. A. (2019). Pre-scan cortisol is differentially associated with enhanced connectivity to the cognitive control network in young adults with a history of depression. Psychoneuroendocrinology, 104, 219227. doi: 10.1016/j.psyneuen.2019.03.007CrossRefGoogle Scholar
Porcu, M., Operamolla, A., Scapin, E., Garofalo, P., Destro, F., Caneglias, A., … Saba, L. (2020). Effects of white matter hyperintensities on brain connectivity and hippocampal volume in healthy subjects according to their localization. Brain Connectivity, 10(8), 436447. doi: 10.1089/brain.2020.0774CrossRefGoogle ScholarPubMed
Posener, J. A., Wang, L., Price, J. L., Gado, M. H., Province, M. A., Miller, M. I., … Csernansky, J. G. (2003). High-dimensional mapping of the hippocampus in depression. American Journal of Psychiatry, 160(1), 8389. doi: 10.1176/appi.ajp.160.1.83CrossRefGoogle ScholarPubMed
Primo de Carvalho Alves, L., & Sica da Rocha, N. (2018). Lower levels of brain-derived neurotrophic factor are associated with melancholic psychomotor retardation among depressed inpatients. Bipolar Disorders, 20(8), 746752. doi: 10.1111/bdi.12636CrossRefGoogle ScholarPubMed
Primo de Carvalho Alves, L., & Sica da Rocha, N. (2020). Different cytokine patterns associate with melancholia severity among inpatients with major depressive disorder. Therapeutic Advances in Psychopharmacology, 10, 2045125320937921. doi: 10.1177/2045125320937921CrossRefGoogle ScholarPubMed
Quinn, C. R., Dobson-Stone, C., Outhred, T., Harris, A., & Kemp, A. H. (2012). The contribution of BDNF and 5-HTT polymorphisms and early life stress to the heterogeneity of major depressive disorder: A preliminary study. Australian and New Zealand Journal of Psychiatry, 46(1), 5563. doi: 10.1177/0004867411430878CrossRefGoogle Scholar
Quinn, C. R., Harris, A., Felmingham, K., Boyce, P., & Kemp, A. (2012). The impact of depression heterogeneity on cognitive control in major depressive disorder. Australian and New Zealand Journal of Psychiatry, 46(11), 10791088. doi: 10.1177/0004867412461383CrossRefGoogle ScholarPubMed
Reinen, J. M., Chen, O. Y., Hutchison, R. M., Yeo, B. T. T., Anderson, K. M., Sabuncu, M. R., … Holmes, A. J. (2018). The human cortex possesses a reconfigurable dynamic network architecture that is disrupted in psychosis. Nature Communications, 9(1), 1157. doi: 10.1038/s41467-018-03462-yCrossRefGoogle ScholarPubMed
Reshetnikov, V. V., Kovner, A. V., Lepeshko, A. A., Pavlov, K. S., Grinkevich, L. N., & Bondar, N. P. (2020). Stress early in life leads to cognitive impairments, reduced numbers of CA3 neurons and altered maternal behavior in adult female mice. Genes, Brain and Behavior, 19(3), e12541. doi: 10.1111/gbb.12541CrossRefGoogle ScholarPubMed
Ridout, N., Astell, A., Reid, I., Glen, T., & O'Carroll, R. (2003). Memory bias for emotional facial expressions in major depression. Cognition and Emotion, 17(1), 101122. doi: 10.1080/02699930302272CrossRefGoogle ScholarPubMed
Rive, M. M., van Rooijen, G., Veltman, D. J., Phillips, M. L., Schene, A. H., & Ruhe, H. G. (2013). Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neuroscience and Biobehavioral Reviews, 37(10 Pt 2), 25292553. doi: 10.1016/j.neubiorev.2013.07.018CrossRefGoogle ScholarPubMed
Robinson, J. L., Barron, D. S., Kirby, L. A., Bottenhorn, K. L., Hill, A. C., Murphy, J. E., … Fox, P. T. (2015). Neurofunctional topography of the human hippocampus. Human Brain Mapping, 36(12), 50185037. doi: 10.1002/hbm.22987CrossRefGoogle ScholarPubMed
Roca, M., Monzon, S., Vives, M., Lopez-Navarro, E., Garcia-Toro, M., Vicens, C., … Gili, M. (2015). Cognitive function after clinical remission in patients with melancholic and non-melancholic depression: A 6 month follow-up study. Journal of Affective Disorders, 171, 8592. doi: 10.1016/j.jad.2014.09.018CrossRefGoogle ScholarPubMed
Rochefort, C., Lefort, J. M., & Rondi-Reig, L. (2013). The cerebellum: A new key structure in the navigation system. Frontiers in Neural Circuits, 7, 35. doi: 10.3389/fncir.2013.00035CrossRefGoogle ScholarPubMed
Rusch, B. D., Abercrombie, H. C., Oakes, T. R., Schaefer, S. M., & Davidson, R. J. (2001). Hippocampal morphometry in depressed patients and control subjects: Relations to anxiety symptoms. Biological Psychiatry, 50(12), 960964. doi: 10.1016/s0006-3223(01)01248-3CrossRefGoogle ScholarPubMed
Saleh, A., Potter, G. G., McQuoid, D. R., Boyd, B., Turner, R., MacFall, J. R., & Taylor, W. D. (2017). Effects of early life stress on depression, cognitive performance and brain morphology. Psychological Medicine, 47(1), 171181. doi: 10.1017/S0033291716002403CrossRefGoogle ScholarPubMed
Schoonheim, M. M., Douw, L., Broeders, T. A., Eijlers, A. J., Meijer, K. A., & Geurts, J. J. (2021). The cerebellum and its network: Disrupted static and dynamic functional connectivity patterns and cognitive impairment in multiple sclerosis. Multiple Sclerosis, 27(13), 20312039. doi: 10.1177/1352458521999274.CrossRefGoogle ScholarPubMed
Shan, X., Cui, X., Liu, F., Li, H., Huang, R., Tang, Y., … Xie, G. (2021). Shared and distinct homotopic connectivity changes in melancholic and non-melancholic depression. Journal of Affective Disorders, 287, 268275. doi: 10.1016/j.jad.2021.03.038CrossRefGoogle ScholarPubMed
Shi, C., Kang, L., Yao, S., Ma, Y., Li, T., Liang, Y., … Yu, X. (2015). The MATRICS consensus cognitive battery (MCCB): Co-norming and standardization in China. Schizophrenia Research, 169(1-3), 109115. doi: 10.1016/j.schres.2015.09.003CrossRefGoogle ScholarPubMed
Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex, 22(1), 158165. doi: 10.1093/cercor/bhr099CrossRefGoogle ScholarPubMed
Small, S. A., Schobel, S. A., Buxton, R. B., Witter, M. P., & Barnes, C. A. (2011). A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nature Reviews Neuroscience, 12(10), 585601. doi: 10.1038/nrn3085CrossRefGoogle ScholarPubMed
Soriano-Mas, C., Hernandez-Ribas, R., Pujol, J., Urretavizcaya, M., Deus, J., Harrison, B. J., … Cardoner, N. (2011). Cross-sectional and longitudinal assessment of structural brain alterations in melancholic depression. Biological Psychiatry, 69(4), 318325. doi: 10.1016/j.biopsych.2010.07.029CrossRefGoogle ScholarPubMed
Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2012). Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study. Neuroimage, 59(2), 15601570. doi: 10.1016/j.neuroimage.2011.08.065CrossRefGoogle ScholarPubMed
Suarez-Jimenez, B., Zhu, X., Lazarov, A., Mann, J. J., Schneier, F., Gerber, A., … Markowitz, J. C. (2020). Anterior hippocampal volume predicts affect-focused psychotherapy outcome. Psychological Medicine, 50(3), 396402. doi: 10.1017/S0033291719000187CrossRefGoogle ScholarPubMed
Teicher, M. H., Anderson, C. M., & Polcari, A. (2012). Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum. Proceedings of the National Academy of Sciences of the United States of America, 109(9), E563E572. doi: 10.1073/pnas.1115396109Google ScholarPubMed
Therriault, J., Wang, S., Mathotaarachchi, S., Pascoal, T. A., Parent, M., & Beaudry, T.Alzheimer's Disease Neuroimaging, I. (2019). Rostral-caudal hippocampal functional convergence is reduced across the Alzheimer's disease spectrum. Molecular Neurobiology, 56(12), 83368344. doi: 10.1007/s12035-019-01671-0CrossRefGoogle ScholarPubMed
Tondo, L., Vazquez, G. H., & Baldessarini, R. J. (2020). Melancholic versus nonmelancholic major depression compared. Journal of Affective Disorders, 266, 760765. doi: 10.1016/j.jad.2020.01.139CrossRefGoogle ScholarPubMed
van Geest, Q., Hulst, H. E., Meijer, K. A., Hoyng, L., Geurts, J. J. G., & Douw, L. (2018). The importance of hippocampal dynamic connectivity in explaining memory function in multiple sclerosis. Brain and Behavior, 8(5), e00954. doi: 10.1002/brb3.954CrossRefGoogle ScholarPubMed
Vasilopoulou, K., Papathanasiou, P., Michopoulos, J., Boufidou, F., Oulis, P., Nikolaou, C., … Lykouras, L. (2011). [A volumetric study of brain structures in subtypes of depression]. Psychiatrike = Psychiatriki, 22(2), 120131.Google ScholarPubMed
Vassilopoulou, K., Papathanasiou, M., Michopoulos, I., Boufidou, F., Oulis, P., Kelekis, N., … Lykouras, L. (2013). A magnetic resonance imaging study of hippocampal, amygdala and subgenual prefrontal cortex volumes in major depression subtypes: Melancholic versus psychotic depression. Journal of Affective Disorders, 146(2), 197204. doi: 10.1016/j.jad.2012.09.003CrossRefGoogle ScholarPubMed
Wang, J., Wang, Y., Huang, H., Jia, Y., Zheng, S., Zhong, S., … Huang, R. (2020). Abnormal dynamic functional network connectivity in unmedicated bipolar and major depressive disorders based on the triple-network model. Psychological Medicine, 50(3), 465474. doi: 10.1017/S003329171900028XCrossRefGoogle ScholarPubMed
Wang, Y., Chen, G., Zhong, S., Jia, Y., Xia, L., Lai, S., … Liu, T. (2018). Association between resting-state brain functional connectivity and cortisol levels in unmedicated major depressive disorder. Journal of Psychiatric Research, 105, 5562. doi: 10.1016/j.jpsychires.2018.08.025CrossRefGoogle ScholarPubMed
Wang, Z., Yuan, Y., Bai, F., Shu, H., You, J., Li, L., & Zhang, Z. (2015). Altered functional connectivity networks of hippocampal subregions in remitted late-onset depression: A longitudinal resting-state study. Neuroscience Bulletin, 31(1), 1321. doi: 10.1007/s12264-014-1489-1CrossRefGoogle ScholarPubMed
Watson, T. C., Obiang, P., Torres-Herraez, A., Watilliaux, A., Coulon, P., Rochefort, C., … Rondi-Reig, L. (2019). Anatomical and physiological foundations of cerebello-hippocampal interaction. Elife, 8, e41896. doi: 10.7554/eLife.41896.CrossRefGoogle ScholarPubMed
Weightman, M. J., Air, T. M., & Baune, B. T. (2014). A review of the role of social cognition in major depressive disorder. Frontiers in Psychiatry, 5, 179. doi: 10.3389/fpsyt.2014.00179CrossRefGoogle ScholarPubMed
Wise, T., Marwood, L., Perkins, A. M., Herane-Vives, A., Joules, R., Lythgoe, D. J., … Arnone, D. (2017). Instability of default mode network connectivity in major depression: A two-sample confirmation study. Translational Psychiatry, 7(4), e1105. doi: 10.1038/tp.2017.40CrossRefGoogle ScholarPubMed
Withall, A., Harris, L. M., & Cumming, S. R. (2010). A longitudinal study of cognitive function in melancholic and non-melancholic subtypes of major depressive disorder. Journal of Affective Disorders, 123(1-3), 150157. doi: 10.1016/j.jad.2009.07.012CrossRefGoogle ScholarPubMed
Woo, Y. S., Rosenblat, J. D., Kakar, R., Bahk, W. M., & McIntyre, R. S. (2016). Cognitive deficits as a mediator of poor occupational function in remitted major depressive disorder patients. Clinical Psychopharmacology and Neuroscience, 14(1), 116. doi: 10.9758/cpn.2016.14.1.1CrossRefGoogle ScholarPubMed
Xu, L. Y., Xu, F. C., Liu, C., Ji, Y. F., Wu, J. M., Wang, Y., … Yu, Y. Q. (2017). Relationship between cerebellar structure and emotional memory in depression. Brain and Behavior, 7(7), e00738. doi: 10.1002/brb3.738CrossRefGoogle ScholarPubMed
Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339351. doi: 10.1007/s12021-016-9299-4CrossRefGoogle ScholarPubMed
Yonelinas, A. P. (2013). The hippocampus supports high-resolution binding in the service of perception, working memory and long-term memory. Behavioural Brain Research, 254, 3444. doi: 10.1016/j.bbr.2013.05.030CrossRefGoogle ScholarPubMed
Yu, A. J., & Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46(4), 681692. doi: 10.1016/j.neuron.2005.04.026CrossRefGoogle ScholarPubMed
Zaninotto, L., Solmi, M., Veronese, N., Guglielmo, R., Ioime, L., Camardese, G., & Serretti, A. (2016). A meta-analysis of cognitive performance in melancholic versus non-melancholic unipolar depression. Journal of Affective Disorders, 201, 1524. doi: 10.1016/j.jad.2016.04.039CrossRefGoogle ScholarPubMed
Zeidler, Z., Hoffmann, K., & Krook-Magnuson, E. (2020). HippoBellum: Acute cerebellar modulation alters hippocampal dynamics and function. Journal of Neuroscience, 40(36), 69106926. doi: 10.1523/JNEUROSCI.0763-20.2020CrossRefGoogle ScholarPubMed
Zeidman, P., & Maguire, E. A. (2016). Anterior hippocampus: The anatomy of perception, imagination and episodic memory. Nature Reviews Neuroscience, 17(3), 173182. doi: 10.1038/nrn.2015.24CrossRefGoogle ScholarPubMed
Zhang, J., Cheng, W., Liu, Z., Zhang, K., Lei, X., Yao, Y., … Feng, J. (2016). Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. Brain, 139(Pt 8), 23072321. doi: 10.1093/brain/aww143CrossRefGoogle ScholarPubMed
Zhou, L., Liu, G., Luo, H., Li, H., Peng, Y., Zong, D., & Ouyang, R. (2020). Aberrant hippocampal network connectivity is associated with neurocognitive dysfunction in patients With moderate and severe obstructive sleep apnea. Frontiers in Neurology, 11, 580408. doi: 10.3389/fneur.2020.580408CrossRefGoogle ScholarPubMed
Zhu, D. M., Yang, Y., Zhang, Y., Wang, C., Wang, Y., Zhang, C., … Zhu, J. (2020). Cerebellar-cerebral dynamic functional connectivity alterations in major depressive disorder. Journal of Affective Disorders, 275, 319328. doi: 10.1016/j.jad.2020.06.062CrossRefGoogle ScholarPubMed
Supplementary material: File

Shunkai et al. supplementary material

Shunkai et al. supplementary material

Download Shunkai et al. supplementary material(File)
File 537.3 KB