Skip to main content Accessibility help
×
Home
Hostname: page-component-7bb4899584-rm9q9 Total loading time: 0.604 Render date: 2023-01-26T22:35:01.619Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Sex differences across developmental domains among children with a familial risk of severe mental disorders

Published online by Cambridge University Press:  14 February 2022

Birgitte Klee Burton*
Affiliation:
Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Gentofte Hospitalsvej 3A, 1st floor, 2900 Hellerup, Denmark Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
Klaus Kaae Andersen
Affiliation:
Danish Cancer Society Research Center, Statistics and Pharmacoepidemiology, Strandboulevarden 49, 2100 Copenhagen, Denmark
Aja N. Greve
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Psychosis Research Unit, Aarhus University Hospital Psychiatry, Palle Juul-Jensens Boulevard 175, 8200 Aarhus N, Denmark
Nicoline Hemager
Affiliation:
Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Gentofte Hospitalsvej 3A, 1st floor, 2900 Hellerup, Denmark The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Copenhagen Research Center for Mental Health – CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Gentofte Hospitalsvej 15, 4th floor, 2900 Hellerup, Denmark
Katrine S. Spang
Affiliation:
Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Gentofte Hospitalsvej 3A, 1st floor, 2900 Hellerup, Denmark The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
Ditte Ellersgaard
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Copenhagen Research Center for Mental Health – CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Gentofte Hospitalsvej 15, 4th floor, 2900 Hellerup, Denmark
Camilla J. Christiani
Affiliation:
Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Gentofte Hospitalsvej 3A, 1st floor, 2900 Hellerup, Denmark The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
Ditte Gantriis
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Psychosis Research Unit, Aarhus University Hospital Psychiatry, Palle Juul-Jensens Boulevard 175, 8200 Aarhus N, Denmark
Maja Gregersen
Affiliation:
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Copenhagen Research Center for Mental Health – CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Gentofte Hospitalsvej 15, 4th floor, 2900 Hellerup, Denmark
Anne Søndergaard
Affiliation:
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Copenhagen Research Center for Mental Health – CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Gentofte Hospitalsvej 15, 4th floor, 2900 Hellerup, Denmark
Jens Richardt M. Jepsen
Affiliation:
Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Gentofte Hospitalsvej 3A, 1st floor, 2900 Hellerup, Denmark The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Copenhagen Research Center for Mental Health – CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Gentofte Hospitalsvej 15, 4th floor, 2900 Hellerup, Denmark Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Copenhagen University Hospital, Psychiatric Hospital Centre Glostrup, Ndr. Ringvej 29-67, 2600 Glostrup, Denmark
Vibeke Fuglsang Bliksted
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Psychosis Research Unit, Aarhus University Hospital Psychiatry, Palle Juul-Jensens Boulevard 175, 8200 Aarhus N, Denmark Department of Clinical Medicine, Faculty of Health and Medical Services, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200 Aarhus N, Denmark
Ole Mors
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Psychosis Research Unit, Aarhus University Hospital Psychiatry, Palle Juul-Jensens Boulevard 175, 8200 Aarhus N, Denmark Department of Clinical Medicine, Faculty of Health and Medical Services, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200 Aarhus N, Denmark
Kerstin Jessica Plessen
Affiliation:
Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Gentofte Hospitalsvej 3A, 1st floor, 2900 Hellerup, Denmark The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Division of Child and Adolescent Psychiatry, Department of Psychiatry, University Medical Center, University of Lausanne, Avenue d'Echallens 9, CH-1004 Lausanne, Switzerland
Merete Nordentoft
Affiliation:
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Copenhagen Research Center for Mental Health – CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Gentofte Hospitalsvej 15, 4th floor, 2900 Hellerup, Denmark
Anne A. E. Thorup
Affiliation:
Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Gentofte Hospitalsvej 3A, 1st floor, 2900 Hellerup, Denmark Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
*
Author for correspondence: Birgitte Klee Burton, E-mail: Birgitte.Klee.Burton@regionh.dk

Abstract

Background

Sex differences in brain structure and neurodevelopment occur in non-clinical populations. We investigated whether sex had a similar effect on developmental domains amongst boys and girls with a familial risk of schizophrenia (FHR-SZ), bipolar disorder (FHR-BP), and controls.

Methods

Through Danish registries, we identified 522 7-year-old children (242 girls) with FHR-SZ, FHR-BP, and controls. We assessed their performance within the domains of neurocognition, motor function, language, social cognition, social behavior, psychopathology, and home environment.

Results

FHR-SZ boys compared with FHR-SZ girls had a higher proportion of disruptive behavior and attention-deficit hyperactivity disorder (ADHD) and exhibited lower performance in manual dexterity, balance, and emotion recognition. No sex differences were found between boys and girls within FHR-BP group. Compared with controls, both FHR-SZ boys and FHR-SZ girls showed impaired processing speed and working memory, had lower levels of global functioning, and were more likely to live in an inadequate home environment. Compared with control boys, FHR-SZ boys showed impaired manual dexterity, social behavior, and social responsiveness, and had a higher proportion of ADHD and disruptive behavior disorder diagnoses. Stress and adjustment disorders were more common in FHR-BP boys compared with control boys. We found no differences between FHR-BP girls and control girls.

Conclusions

Impairment within neurodevelopmental domains associated within FHR-SZ boys v. FHR-SZ girls was most evident among boys, whereas no sex differences were found within the FHR-BP group (FHR-BP boys v. FHR-BP girls). FHR-SZ boys exhibited the highest proportion of early developmental impairments.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T., & Rescorla, L. (2001). Manual for the ASEBA school-age forms & profiles. Burlington: University of Vermont, Research Center for Children, Youth & Families.Google Scholar
Agnew-Blais, J., & Seidman, L. J. (2013). Neurocognition in youth and young adults under age 30 at familial risk for schizophrenia: A quantitative and qualitative review. Cognitive Neuropsychiatry, 18, 4482. doi: 10.1080/13546805.2012.676309.CrossRefGoogle Scholar
Altemus, M., Sarvaiya, N., & Neill Epperson, C. (2014). Sex differences in anxiety and depression clinical perspectives. Frontiers in Neuroendocrinology, 35, 320330. doi: 10.1016/j.yfrne.2014.05.004.CrossRefGoogle ScholarPubMed
Andermann, L. (2010). Culture and the social construction of gender: Mapping the intersection with mental health. International Review of Psychiatry, 22, 501512. doi: 10.3109/09540261.2010.506184.CrossRefGoogle ScholarPubMed
Aylward, E., Walker, E., & Bettes, B. (1984). Intelligence in schizophrenia: Meta-analysis of the research. Schizophrenia Bulletin, 10, 430459. doi: 10.1093/schbul/10.3.430.CrossRefGoogle Scholar
Barkley, R., Gwenyth, E. H., & Arthur, L. R. (1999). Defiant teens. A clinician's manual for assessment and family intervention. New York: Guilford.Google Scholar
Biederman, J., Mick, E., Faraone, S. V., Braaten, E., Doyle, A., Spencer, T., … Johnson, M. A. (2002). Influence of gender on attention deficit hyperactivity disorder in children referred to a psychiatric clinic. American Journal of Psychiatry, 159, 3642. doi: 10.1176/appi.ajp.159.1.36.CrossRefGoogle ScholarPubMed
Bishop, D. V. (2010). Test for reception of grammar. Sweden, Danish version: Pearson.Google Scholar
Borglum, A. D., Demontis, D., Grove, J., Pallesen, J., Hollegaard, M. V., Pedersen, C. B., … Mors, O. (2014). Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci. Molecular Psychiatry, 19, 325333. doi: 10.1038/mp.2013.2.CrossRefGoogle ScholarPubMed
Brown, A. S. (2006). Prenatal infection as a risk factor for schizophrenia. Schizophrenia Bulletin, 32, 200202.CrossRefGoogle Scholar
Burton, B. K., Thorup, A. A. E., Jepsen, J. R., Poulsen, G., Ellersgaard, D., Spang, K. S., … Plessen, K. J. (2017). Impairments of motor function among children with a familial risk of schizophrenia or bipolar disorder at 7 years old in Denmark: An observational cohort study. The Lancet Psychiatry, 4, 400408. doi: 10.1016/S2215-0366(17)30103-7.CrossRefGoogle ScholarPubMed
Burton, B. K., Vangkilde, S., Petersen, A., Skovgaard, L. T., Jepsen, J. R., Hemager, N., … Plessen, K. J. (2018). Sustained attention and interference control among 7-year-old children with a familial high risk of schizophrenia or bipolar disorder-a nationwide observational cohort study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 704712. doi: 10.1016/j.bpsc.2018.04.012.Google ScholarPubMed
Byrne, M., Agerbo, E., Bennedsen, B., Eaton, W. W., & Mortensen, P. B. (2007). Obstetric conditions and risk of first admission with schizophrenia: A Danish national register-based study. Schizophrenia Research, 97, 5159. doi: 10.1016/j.schres.2007.07.018.CrossRefGoogle ScholarPubMed
Caldwell, B., & Bradley, R. (2003). Home inventory administration manual. Little Rock, AK: Print Design Inc.Google Scholar
Cannon, M., Caspi, A., Moffitt, T. E., Harrington, H., Taylor, A., Murray, R. M., & Poulton, R. (2002). Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: Results from a longitudinal birth cohort. Archives of General Psychiatry, 59, 449456. doi: 10.1001/archpsyc.59.5.449.CrossRefGoogle ScholarPubMed
Christiani, C. J., Jepsen, J. R. M., Thorup, A., Hemager, N., Ellersgaard, D., Spang, K. S., … Nordentoft, M. (2019). Social cognition, language, and social behavior in 7–year-old children at familial high-risk of developing schizophrenia or bipolar disorder: The Danish high risk and resilience study VIA 7-a population-based cohort study. Schizophrenia Bulletin, 45, 12181230. doi: 10.1093/schbul/sbz001.CrossRefGoogle ScholarPubMed
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Collishaw, S., Pickles, A., Messer, J., Rutter, M., Shearer, C., & Maughan, B. (2007). Resilience to adult psychopathology following childhood maltreatment: Evidence from a community sample. Child Abuse & Neglect, 31, 211229. doi: 10.1016/j.chiabu.2007.02.004.CrossRefGoogle ScholarPubMed
Constantino, J. N., Davis, S. A., Todd, R. D., Schindler, M. K., Gross, M. M., Brophy, S. L., … Reich, W. (2003). Validation of a brief quantitative measure of autistic traits: Comparison of the social responsiveness scale with the autism diagnostic interview-revised. Journal of Autism and Developmental Disorders, 33, 427433. doi: 10.1023/a:1025014929212.CrossRefGoogle ScholarPubMed
Cornblatt, B., Obuchowski, M., Roberts, S., Pollack, S., & Erlenmeyer-Kimling, L. (1999). Cognitive and behavioral precursors of schizophrenia. Development and Psychopathology, 11, 487508. doi: 10.1017/s0954579499002175.CrossRefGoogle ScholarPubMed
Dalsgaard, S., Thorsteinsson, E., Trabjerg, B. B., Schullehner, J., Plana-Ripoll, O., Brikell, I., … Pedersen, C. B. (2020). Incidence rates and cumulative incidences of the full spectrum of diagnosed mental disorders in childhood and adolescence. JAMA Psychiatry, 77, 155164. doi: 10.1001/jamapsychiatry.2019.3523.CrossRefGoogle ScholarPubMed
Daruy-Filho, L., Brietzke, E., Lafer, B., & Grassi-Oliveira, R. (2011). Childhood maltreatment and clinical outcomes of bipolar disorder. Acta Psychiatrica Scandinavica, 124, 427434. doi: 10.1111/j.1600-0447.2011.01756.x.CrossRefGoogle ScholarPubMed
Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan executive function system. San Antonio, TX: Psychological Corporation.Google Scholar
Diwadkar, V. A., Goradia, D., Hosanagar, A., Mermon, D., Montrose, D. M., Birmaher, B., … Keshavan, M. S. (2011). Working memory and attention deficits in adolescent offspring of schizophrenia or bipolar patients: Comparing vulnerability markers. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35, 13491354. doi: 10.1016/j.pnpbp.2011.04.009.CrossRefGoogle ScholarPubMed
Done, D. J., Crow, T. J., Johnstone, E. C., & Sacker, A. (1994). Childhood antecedents of schizophrenia and affective illness: Social adjustment at ages 7 and 11. British Medical Journal, 309, 699703. doi: 10.1136/bmj.309.6956.699.CrossRefGoogle ScholarPubMed
Duffy, A., Horrocks, J., Doucette, S., Keown-Stoneman, C., Mccloskey, S., & Grof, P. (2014). The developmental trajectory of bipolar disorder. British Journal of Psychiatry, 204, 122128. doi: 10.1192/bjp.bp.113.126706.CrossRefGoogle ScholarPubMed
Dupaul, G. J., Power, T. J., & Anastopoulos, A. (1998). ADHD rating scale-IV. New York: The Guilford Press.Google Scholar
Ellersgaard, D., Jessica Plessen, K., Richardt Jepsen, J., Soeborg Spang, K., Hemager, N., Klee Burton, B., … Elgaard Thorup, A. A. (2018). Psychopathology in 7-year-old children with familial high risk of developing schizophrenia spectrum psychosis or bipolar disorder – The Danish High Risk and Resilience Study – VIA 7, a population-based cohort study. World Psychiatry, 17, 210219. doi: 10.1002/wps.20527.CrossRefGoogle ScholarPubMed
Erlenmeyer-Kimling, L., Rock, D., Roberts, S. A., Janal, M., Kestenbaum, C., Cornblatt, B., … Gottesman, I. I. (2000). Attention, memory, and motor skills as childhood predictors of schizophrenia-related psychoses: The New York high-risk project. American Journal of Psychiatry, 157, 14161422. doi: 10.1176/appi.ajp.157.9.1416.CrossRefGoogle ScholarPubMed
Gantriis, D. L., Thorup, A. A. E., Harder, S., Greve, A. N., Henriksen, M. T., Zahle, K. K., … Bliksted, V. (2019). Home visits in the Danish high risk and resilience study – VIA 7: Assessment of the home environment of 508 7-year-old children born to parents diagnosed with schizophrenia or bipolar disorder. Acta Psychiatrica Scandinavica, 140, 126134. doi: 10.1111/acps.13057.CrossRefGoogle ScholarPubMed
Giedd, J. N., Castellanos, F. X., Rajapakse, J. C., Vaituzis, A. C., & Rapoport, J. L. (1997). Sexual dimorphism of the developing human brain. Progress in Neuropsychopharmacology and Biological Psychiatry, 21, 11851201. doi: 10.1016/s0278-5846(97)00158-9.CrossRefGoogle ScholarPubMed
Giedd, J. N., & Rapoport, J. L. (2010). Structural MRI of pediatric brain development: What have we learned and where are we going? Neuron, 67, 728734. doi: 10.1016/j.neuron.2010.08.040.CrossRefGoogle ScholarPubMed
Gilmore, J. H., Shi, F., Woolson, S. L., Knickmeyer, R. C., Short, S. J., Lin, W., … Shen, D. (2012). Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cerebral Cortex, 22, 24782485. doi: 10.1093/cercor/bhr327.CrossRefGoogle ScholarPubMed
Goetz, M., Novak, T., Viktorinova, M., Ptacek, R., Mohaplova, M., & Sebela, A. (2019). Neuropsychological functioning and temperament traits in a Czech sample of children and adolescents at familial risk of bipolar disorder. Frontiers in Psychiatry, 10, 198. doi: 10.3389/fpsyt.2019.00198.CrossRefGoogle Scholar
Gogos, A., Ney, L. J., Seymour, N., Van Rheenen, T. E., & Felmingham, K. L. (2019). Sex differences in schizophrenia, bipolar disorder, and post-traumatic stress disorder: Are gonadal hormones the link? British Journal of Pharmacology, 176, 41194135. doi: 10.1111/bph.14584.CrossRefGoogle ScholarPubMed
Gogos, A., Sbisa, A. M., Sun, J., Gibbons, A., Udawela, M., & Dean, B. (2015). A role for estrogen in schizophrenia: Clinical and preclinical findings. International Journal of Endocrinology, 2015, 615356. doi: 10.1155/2015/615356.CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 81748179. doi: 10.1073/pnas.0402680101.CrossRefGoogle ScholarPubMed
Gogtay, N., Greenstein, D., Lenane, M., Clasen, L., Sharp, W., Gochman, P., … Rapoport, J. (2007). Cortical brain development in nonpsychotic siblings of patients with childhood-onset schizophrenia. Archives of General Psychiatry, 64, 772780. doi: 10.1001/archpsyc.64.7.772.CrossRefGoogle ScholarPubMed
Gur, R. C., & Gur, R. E. (2017). Complementarity of sex differences in brain and behavior: From laterality to multimodal neuroimaging. Journal of Neuroscience Research, 95, 189199. doi: 10.1002/jnr.23830.CrossRefGoogle ScholarPubMed
Hameed, M. A., & Lewis, A. J. (2016). Offspring of parents with schizophrenia: A systematic review of developmental features across childhood. Harvard Review of Psychiatry, 24, 104117. doi: 10.1097/hrp.0000000000000076.CrossRefGoogle ScholarPubMed
Hans, S. L. M. (1999). Neurobehavioral deficits at adolescence in children at risk for schizophrenia: The Jerusalem Infant Development Study. Archives of General Psychiatry, 56, 741748. doi: 10.1001/archpsyc.56.8.741.CrossRefGoogle ScholarPubMed
Hemager, N., Plessen, K. J., Thorup, A., Christiani, C., Ellersgaard, D., Spang, K. S., … Jepsen, J. R. M. (2018). Assessment of neurocognitive functions in 7-year-old children at familial high risk for schizophrenia or bipolar disorder: The Danish high risk and resilience study VIA 7. JAMA Psychiatry, 75, 844852. doi: 10.1001/jamapsychiatry.2018.1415.CrossRefGoogle ScholarPubMed
Hemager, N., Vangkilde, S., Thorup, A., Christiani, C., Ellersgaard, D., Spang, K. S., … Plessen, K. J. (2019). Visual attention in 7-year-old children at familial high risk of schizophrenia or bipolar disorder: The Danish high risk and resilience study VIA 7. Journal of Affective Disorders, 258, 5665. doi: 10.1016/j.jad.2019.07.079.CrossRefGoogle ScholarPubMed
Henderson, S., Sugden, D., & Barnett, A. (2007). The movement assessment battery for children. London: The Psychological Corporation.Google Scholar
Hjorthøj, C., Posselt, C. M., & Nordentoft, M. (2021). Development over time of the population-attributable risk fraction for cannabis use disorder in schizophrenia in Denmark. JAMA Psychiatry, 78, 10131019. doi: 10.1001/jamapsychiatry.2021.1471.CrossRefGoogle ScholarPubMed
Howes, O. D., & Murray, R. M. (2014). Schizophrenia: An integrated sociodevelopmental-cognitive model. Lancet (London, England), 383, 16771687. doi: 10.1016/S0140-6736(13)62036-X.CrossRefGoogle ScholarPubMed
Isohanni, M., Jones, P. B., Moilanen, K., Rantakallio, P., Veijola, J., Oja, H., … Jarvelin, M. (2001). Early developmental milestones in adult schizophrenia and other psychoses. A 31–year follow-up of the Northern Finland 1966 Birth Cohort. Schizophrenia Research, 52, 119. doi: 10.1016/s0920-9964(00)00179-1.CrossRefGoogle ScholarPubMed
Jacobs, G. R., Ameis, S. H., Ji, J. L., Viviano, J. D., Dickie, E. W., Wheeler, A. L., … Voineskos, A. N. (2019). Developmentally divergent sexual dimorphism in the cortico-striatal-thalamic-cortical psychosis risk pathway. Neuropsychopharmacology, 44, 16491658. doi: 10.1038/s41386-019-0408-6.CrossRefGoogle ScholarPubMed
Kaczkurkin, A. N., Raznahan, A., & Satterthwaite, T. D. (2019). Sex differences in the developing brain: Insights from multimodal neuroimaging. Neuropsychopharmacology, 44, 7185. doi: 10.1038/s41386-018-0111-z.CrossRefGoogle ScholarPubMed
Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., … Ryan, N. (1997). Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 980988. doi: 10.1097/00004583-199707000-00021.CrossRefGoogle ScholarPubMed
Klimes-Dougan, B., Ronsaville, D., Wiggs, E. A., & Martinez, P. E. (2006). Neuropsychological functioning in adolescent children of mothers with a history of bipolar or major depressive disorders. Biological Psychiatry, 60, 957965. doi: 10.1016/j.biopsych.2006.03.031.CrossRefGoogle ScholarPubMed
Kokras, N., Pastromas, N., Papasava, D., De Bournonville, C., Cornil, C. A., & Dalla, C. (2018). Sex differences in behavioral and neurochemical effects of gonadectomy and aromatase inhibition in rats. Psychoneuroendocrinology, 87, 93107. doi: 10.1016/j.psyneuen.2017.10.007.CrossRefGoogle ScholarPubMed
Kühl, J. O. G., Laursen, T. M., Thorup, A., & Nordentoft, M. (2016). The incidence of schizophrenia and schizophrenia spectrum disorders in Denmark in the period 2000-2012. A register-based study. Schizophrenia Research, 176, 533539. doi: 10.1016/j.schres.2016.06.023.CrossRefGoogle ScholarPubMed
Lewinsohn, P. M., Rohde, P., & Seeley, J. R. (1998). Major depressive disorder in older adolescents: Prevalence, risk factors, and clinical implications. Clinical Psychology Review, 18, 765794. doi: 10.1016/s0272-7358(98)00010-5.CrossRefGoogle ScholarPubMed
Maccabe, J. H., Lambe, M. P., Cnattingius, S., Sham, P. C., David, A. S., Reichenberg, A., … Hultman, C. M. (2010). Excellent school performance at age 16 and risk of adult bipolar disorder: National cohort study. British Journal of Psychiatry, 196, 109115. doi: 10.1192/bjp.bp.108.060368.CrossRefGoogle ScholarPubMed
Makransky, G., & Bilenberg, N. (2014). Psychometric properties of the parent and teacher ADHD Rating Scale (ADHD-RS): Measurement invariance across gender, age, and informant. Assessment, 21, 694705. doi: 10.1177/1073191114535242.CrossRefGoogle ScholarPubMed
Marcus, J. (1985 a). Neurological findings in high-risk children: Childhood assessment and 5-year follow up. Schizophrenia Bulletin, 11, 85100. doi: 10.1093/schbul/11.1.85.CrossRefGoogle Scholar
Marcus, J. H. (1985 b). Neurological dysfunctioning in offspring of schizophrenics in Israel and Denmark. A replication analysis. Archives of General Psychiatry, 42, 753761. doi: 10.1001/archpsyc.1985.01790310015002.CrossRefGoogle Scholar
May, T., Adesina, I., McGillivray, J., & Rinehart, N. J. (2019). Sex differences in neurodevelopmental disorders. Current Opinion in Neurology, 32, 622626. doi: 10.1097/WCO.0000000000000714.CrossRefGoogle ScholarPubMed
Mcconaughy, S., & Achenbach, T. (2004). Manual for the test observation form for ages 2–18. Burlington: University of Vermont, Center for Children Youth, & Families.Google Scholar
Mcgrath, J. J., Eyles, D. W., Pedersen, C. B., Anderson, C., Ko, P., Burne, T. H., … Mortensen, P. B. (2010). Neonatal vitamin D status and risk of schizophrenia: A population-based case-control study. Archives of General Psychiatry, 67, 889894. doi: 10.1001/archgenpsychiatry.2010.110.CrossRefGoogle ScholarPubMed
Mednick, S. A., Machon, R. A., Huttunen, M. O., & Bonett, D. (1988). Adult schizophrenia following prenatal exposure to an influenza epidemic. Archives of General Psychiatry, 45, 189192.CrossRefGoogle Scholar
Meyers, J. E., & Meyers, K. R. (1995). Rey complex figure test and recognition trial. Odessa, FL: Psychological Assessment Resources.Google Scholar
Moore, T. H., Zammit, S., Lingford-Hughes, A., Barnes, T. R., Jones, P. B., Burke, M., & Lewis, G. (2007). Cannabis use and risk of psychotic or affective mental health outcomes: A systematic review. Lancet, 370, 319328.CrossRefGoogle ScholarPubMed
Morgan, C., & Fisher, H. (2007). Environment and schizophrenia: Environmental factors in schizophrenia: Childhood trauma – a critical review. Schizophrenia Bulletin, 33, 310. doi: 10.1093/schbul/sbl053.CrossRefGoogle ScholarPubMed
Mors, O., Perto, G. P., & Mortensen, P. B. (2011). The Danish psychiatric central research register. Scandinavian Journal of Public Health, 39, 5457. doi: 10.1177/1403494810395825.CrossRefGoogle ScholarPubMed
Mortensen, P. B., Norgaard-Pedersen, B., Waltoft, B. L., Sorensen, T. L., Hougaard, D., Torrey, E. F., & Yolken, R. H. (2007). Toxoplasma gondii as a risk factor for early-onset schizophrenia: Analysis of filter paper blood samples obtained at birth. Biological Psychiatry, 61, 688693.CrossRefGoogle ScholarPubMed
Murray, R. M., Bhavsar, V., Tripoli, G., & Howes, O. (2017). 30 Years on: How the neurodevelopmental hypothesis of schizophrenia morphed into the developmental risk factor model of psychosis. Schizophrenia Bulletin, 43, 11901196. doi: 10.1093/schbul/sbx121.CrossRefGoogle ScholarPubMed
Niemi, L. T., Suvisaari, J. M., Tuulio-Henriksson, A., & Lonnqvist, J. K. (2003). Childhood developmental abnormalities in schizophrenia: Evidence from high-risk studies. Schizophrenia Research, 60, 239258. doi: 10.1016/s0920-9964(02)00234-7.CrossRefGoogle ScholarPubMed
Ozan, E., Deveci, E., Oral, M., Karahan, U., Oral, E., Aydin, N., … Kirpinar, I. I. Y. C. (2010). Neurocognitive functioning in a group of offspring genetically at high-risk for schizophrenia in Eastern Turkey. Brain Research Bulletin, 82, 218223. doi: 10.1016/j.brainresbull.2010.04.013.CrossRefGoogle Scholar
Pedersen, C. B., Gotzsche, H., Moller, J. O., & Mortensen, P. B. (2006). The Danish civil registration system. A cohort of eight million persons. Danish Medical Journal, 53, 441449. doi: 10.3109/17453674.2016.1151122.Google ScholarPubMed
Pedersen, C. B., Mors, O., Bertelsen, A., Waltoft, B. L., Agerbo, E., Mcgrath, J. J., … Eaton, W. W. (2014). A comprehensive nationwide study of the incidence rate and lifetime risk for treated mental disorders. JAMA Psychiatry, 71, 573581. doi: 10.1001/jamapsychiatry.2014.16.CrossRefGoogle ScholarPubMed
Pinares-Garcia, P., Stratikopoulos, M., Zagato, A., Loke, H., & Lee, J. (2018). Sex: A significant risk factor for neurodevelopmental and neurodegenerative disorders. Brain Sciences, 8, 154. doi: 10.3390/brainsci8080154.CrossRefGoogle ScholarPubMed
Rasic, D., Hajek, T., Alda, M., & Uher, R. (2014). Risk of mental illness in offspring of parents with schizophrenia, bipolar disorder, and major depressive disorder: A meta-analysis of family high-risk studies. Schizophrenia Bulletin, 40, 2838. doi: 10.1093/schbul/sbt114.CrossRefGoogle ScholarPubMed
Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., Greenstein, D., … Giedd, J. N. (2011). How does your cortex grow? Journal of Neuroscience, 31, 71747177. doi: 10.1523/JNEUROSCI.0054-11.2011.CrossRefGoogle ScholarPubMed
Raznahan, A., Shaw, P. W., Lerch, J. P., Clasen, L. S., Greenstein, D., Berman, R., … Giedd, J. N. (2014). Longitudinal four-dimensional mapping of subcortical anatomy in human development. Proceedings of the National Academy of Sciences of the United States of America, 111, 15921597. doi: 10.1073/pnas.1316911111.CrossRefGoogle ScholarPubMed
Rettberg, J. R., Yao, J., & Brinton, R. D. (2014). Estrogen: A master regulator of bioenergetic systems in the brain and body. Frontiers in Neuroendocrinology, 35, 830. doi: 10.1016/j.yfrne.2013.08.001.CrossRefGoogle ScholarPubMed
Reynolds, C. R., & Kamphaus, R. W. (2003). Reynolds intellectual assessment scales (RIAS). Lutz, FL: Psychological Assessment Resources Inc.Google Scholar
Reynolds, C. R., & Voress, J. K. (2007). Test of memory and learning – second edition (TOMAL-2). Austin, TX: Pro-Ed Inc.Google Scholar
Ruigrok, A. N., Salimi-Khorshidi, G., Lai, M. C., Baron-Cohen, S., Lombardo, M. V., Tait, R. J., & Suckling, J. (2014). A meta-analysis of sex differences in human brain structure. Neuroscience & Biobehavioral Reviews, 39, 3450. doi: 10.1016/j.neubiorev.2013.12.004.CrossRefGoogle ScholarPubMed
Rutter, M. (1985). Resilience in the face of adversity. Protective factors and resistance to psychiatric disorder. British Journal of Psychiatry, 147, 598611.CrossRefGoogle ScholarPubMed
Rutter, M., Caspi, A., & Moffitt, T. E. (2003). Using sex differences in psychopathology to study causal mechanisms: Unifying issues and research strategies. Journal of Child Psychology and Psychiatry, 44, 10921115. doi: 10.1111/1469-7610.00194.CrossRefGoogle ScholarPubMed
Sahakian, B. J., & Owen, A. M. (1992). Computerized assessment in neuropsychiatry using CANTAB: Discussion paper. Journal of the Royal Society of Medicine, 85, 399402.Google ScholarPubMed
Schiffman, J., Sorensen, H. J., Maeda, J., Mortensen, E. L., Victoroff, J., Hayashi, K., … Mednick, S. (2009). Childhood motor coordination and adult schizophrenia spectrum disorders. American Journal of Psychiatry, 166, 10411047. doi: 10.1176/appi.ajp.2009.08091400.CrossRefGoogle ScholarPubMed
Shaffer, D., Gould, M. S., Brasic, J., Ambrosini, P., Fisher, P., Bird, H., & Aluwahlia, S. (1983). A children's global assessment scale (CGAS). Archives of General Psychiatry, 40, 12281231. doi: 10.1001/archpsyc.1983.01790100074010.CrossRefGoogle Scholar
Sowell, E. R., Peterson, B. S., Kan, E., Woods, R. P., Yoshii, J., Bansal, R., … Toga, A. W. (2007). Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cerebral Cortex, 17, 15501560. doi: 10.1093/cercor/bhl066.CrossRefGoogle ScholarPubMed
Sparrow, S., Cincchetti, D., & Balla, D. (2006). Vineland-II Vineland adaptive behavior scales. Stockholm, Sweden: Pearson Education, Inc.Google Scholar
Sun, J., Walker, A. J., Dean, B., Van Den Buuse, M., & Gogos, A. (2016). Progesterone: The neglected hormone in schizophrenia? A focus on progesterone-dopamine interactions. Psychoneuroendocrinology, 74, 126140. doi: 10.1016/j.psyneuen.2016.08.019.CrossRefGoogle ScholarPubMed
Sussman, D., Leung, R. C., Chakravarty, M. M., Lerch, J. P., & Taylor, M. J. (2016). The developing human brain: Age-related changes in cortical, subcortical, and cerebellar anatomy. Brain and Behavior, 6, e00457. doi: 10.1002/brb3.457.CrossRefGoogle ScholarPubMed
Thapar, A., & Cooper, M. (2016). Attention deficit hyperactivity disorder. Lancet, 387, 12401250. doi: 10.1016/s0140-6736(15)00238-x.CrossRefGoogle ScholarPubMed
Thorup, A., Waltoft, B. L., Pedersen, C. B., Mortensen, P. B., & Nordentoft, M. (2007). Young males have a higher risk of developing schizophrenia: A Danish register study. Psychological Medicine, 37, 479484. doi: 10.1017/S0033291707009944.CrossRefGoogle ScholarPubMed
Thorup, A. A., Jepsen, J. R., Ellersgaard, D. V., Burton, B. K., Christiani, C. J., Hemager, N., … Nordentoft, M. (2015). The Danish high risk and resilience study – VIA 7 – a cohort study of 520 7-year-old children born of parents diagnosed with either schizophrenia, bipolar disorder or neither of these two mental disorders. BMC Psychiatry, 15, 233. doi: 10.1186/s12888-015-0616-5.CrossRefGoogle ScholarPubMed
Uher, R. (2009). The role of genetic variation in the causation of mental illness: An evolution-informed framework. Molecular Psychiatry, 14, 10721082. doi: 10.1038/mp.2009.85.CrossRefGoogle ScholarPubMed
Uher, R. (2014). Gene-environment interactions in severe mental illness. Frontiers in Psychiatry, 5, 48. doi: 10.3389/fpsyt.2014.00048.CrossRefGoogle ScholarPubMed
Van, O. J., Kenis, G., & Rutten, B. P. (2010). The environment and schizophrenia. Nature, 468, 203212.CrossRefGoogle Scholar
Van, O. J., Rutten, B. P., Myin-Germeys, I., Delespaul, P., Viechtbauer, W., Van, Z. C., … Mirjanic, T. (2014). Identifying gene-environment interactions in schizophrenia: Contemporary challenges for integrated, large-scale investigations. Schizophrenia Bulletin, 40, 729736.Google Scholar
Varese, F., Smeets, F., Drukker, M., Lieverse, R., Lataster, T., Viechtbauer, W., … Bentall, R. P. (2012). Childhood adversities increase the risk of psychosis: A meta-analysis of patient-control, prospective- and cross-sectional cohort studies. Schizophrenia Bulletin, 38, 661671. doi: 10.1093/schbul/sbs050.CrossRefGoogle ScholarPubMed
Vassos, E., Pedersen, C. B., Murray, R. M., Collier, D. A., & Lewis, C. M. (2012). Meta-analysis of the association of urbanicity with schizophrenia. Schizophrenia Bulletin, 38, 11181123. doi: 10.1093/schbul/sbs096.CrossRefGoogle ScholarPubMed
Walker, E. F., Savoie, T., & Davis, D. (1994). Neuromotor precursors of schizophrenia. Schizophrenia Bulletin, 20, 441451. doi: 10.1093/schbul/20.3.441.CrossRefGoogle ScholarPubMed
Watt, N. F., & Lubensky, A. W. (1976). Childhood roots of schizophrenia. Journal of Consulting and Clinical Psychology, 44, 363375. doi: 10.1037//0022-006x.44.3.363.CrossRefGoogle ScholarPubMed
Wechsler, D. (2003). Wechsler intelligence scale for children – fourth edition (WISC-IV). San Antonio, TX: The Psychological Corporation.Google Scholar
Weiser, M., Reichenberg, A., Rabinowitz, J., Kaplan, Z., Mark, M., Nahon, D., & Davidson, M. (2000). Gender differences in premorbid cognitive performance in a national cohort of schizophrenic patients. Schizophrenia Research, 45, 185190. doi: 10.1016/s0920-9964(99)00190-5.CrossRefGoogle Scholar
White, S., Hill, E., Happé, F., & Frith, U. (2009). Revisiting the strange stories: Revealing mentalizing impairments in autism. Child Development, 80, 10971117. doi: 10.1111/j.1467-8624.2009.01319.x.CrossRefGoogle ScholarPubMed
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Sex differences across developmental domains among children with a familial risk of severe mental disorders
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Sex differences across developmental domains among children with a familial risk of severe mental disorders
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Sex differences across developmental domains among children with a familial risk of severe mental disorders
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *