Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T02:03:46.881Z Has data issue: false hasContentIssue false

Timing dysfunction and cerebellar resting state functional connectivity abnormalities in youth at clinical high-risk for psychosis

Published online by Cambridge University Press:  03 February 2020

K. Juston Osborne*
Affiliation:
Department of Psychology, Northwestern University, Evanston, IL, USA
Katherine S. F. Damme
Affiliation:
Department of Psychology, Northwestern University, Evanston, IL, USA
Tina Gupta
Affiliation:
Department of Psychology, Northwestern University, Evanston, IL, USA
Derek J. Dean
Affiliation:
Department of Psychology, University of Colorado Boulder, Boulder, CO, USA
Jessica A. Bernard
Affiliation:
Department of Psychology, Texas A & M University, College Station, TX, USA
Vijay A. Mittal
Affiliation:
Department of Psychology, Northwestern University, Evanston, Chicago, IL, USA Department of Psychiatry, Institute for Policy Research, Evanston, Chicago, IL, USA Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences (DevSci), Evanston, Chicago, IL, USA
*
Author for correspondence: K. Juston Osborne, E-mail: juston.osborne@u.northwestern.edu

Abstract

Background

Consistent with pathophysiological models of psychosis, temporal disturbances in schizophrenia spectrum populations may reflect abnormal cortical (e.g. prefrontal cortex) and subcortical (e.g. striatum) cerebellar connectivity. However, few studies have examined associations between cerebellar connectivity and timing dysfunction in psychosis populations, and none have been conducted in youth at clinical high-risk (CHR) for psychosis. Thus, it is currently unknown if impairments in temporal processes are present in CHR youth or how they may be associated with cerebellar connectivity and worsening of symptoms.

Methods

A total of 108 (56 CHR/52 controls) youth were administered an auditory temporal bisection task along with a resting state imaging scan to examine cerebellar resting state connectivity. Positive and negative symptoms at baseline and 12 months later were also quantified.

Results

Controlling for alcohol and cannabis use, CHR youth exhibited poorer temporal accuracy compared to controls, and temporal accuracy deficits were associated with abnormal connectivity between the bilateral anterior cerebellum and a right caudate/nucleus accumbens striatal cluster. Poor temporal accuracy accounted for 11% of the variance in worsening of negative symptoms over 12 months.

Conclusions

Behavioral findings suggest CHR youth perceive durations of auditory tones as shortened compared to objective time, which may indicate a slower internal clock. Poorer temporal accuracy in CHR youth was associated with abnormalities in brain regions involved in an important cerebellar network implicated in prominent pathophysiological models of psychosis. Lastly, temporal accuracy was associated with worsening of negative symptoms across 12 months, suggesting temporal dysfunction may be sensitive to illness progression.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addington, J., Stowkowy, J., Liu, L., Cadenhead, K. S., Cannon, T. D., Cornblatt, B. A., … Tsuang, M. T. (2019). Clinical and functional characteristics of youth at clinical high-risk for psychosis who do not transition to psychosis. Psychological Medicine, 49, 16701677.CrossRefGoogle Scholar
Allan, L. G., & Gibbon, J. (1991). Human bisection at the geometric mean. Learning and Motivation, 22, 3958.CrossRefGoogle Scholar
Andreasen, N. C., Nopoulos, P., O'Leary, D. S., Miller, D. D., Wassink, T., & Flaum, M. (1999). Defining the phenotype of schizophrenia: Cognitive dysmetria and its neural mechanisms. Biological Psychiatry, 46, 908920.CrossRefGoogle ScholarPubMed
Andreasen, N. C., Paradiso, S., & O'leary, D. S. (1998). ‘Cognitive dysmetria’ as an integrative theory of schizophrenia: A dysfunction in cortical-subcortical-cerebellar circuitry? Schizophrenia Bulletin, 24, 203218.CrossRefGoogle Scholar
Andreasen, N. C., & Pierson, R. (2008). The role of the cerebellum in schizophrenia. Biological Psychiatry, 64, 8188.CrossRefGoogle Scholar
Anticevic, A., Haut, K., Murray, J. D., Repovs, G., Yang, G. J., Diehl, C., … Goodyear, B. (2015). Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk. JAMA Psychiatry, 72, 882891.CrossRefGoogle Scholar
Barch, D. M. (2014). Cerebellar-thalamic connectivity in schizophrenia. Schizophrenia Bulletin, 40, 12001203.CrossRefGoogle Scholar
Baumann, O., Borra, R. J., Bower, J. M., Cullen, K. E., Habas, C., Ivry, R. B., … Moulton, E. A. (2015). Consensus paper: The role of the cerebellum in perceptual processes. The Cerebellum, 14, 197220.CrossRefGoogle ScholarPubMed
Bernard, J. A., Dean, D. J., Kent, J. S., Orr, J. M., Pelletier-Baldelli, A., Lunsford-Avery, J. R., … Mittal, V. A. (2014). Cerebellar networks in individuals at ultra high-risk of psychosis: Impact on postural sway and symptom severity. Human Brain Mapping, 35, 40644078.CrossRefGoogle ScholarPubMed
Bernard, J. A., & Mittal, V. A. (2014). Cerebellar-motor dysfunction in schizophrenia and psychosis-risk: The importance of regional cerebellar analysis approaches. Frontiers in Psychiatry, 5, 160.CrossRefGoogle ScholarPubMed
Bernard, J. A., Orr, J. M., & Mittal, V. A. (2017). Cerebello-thalamo-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis. NeuroImage: Clinical, 14, 622628.CrossRefGoogle ScholarPubMed
Bernard, J. A., & Seidler, R. D. (2013). Relationships between regional cerebellar volume and sensorimotor and cognitive function in young and older adults. The Cerebellum, 12, 721737.CrossRefGoogle ScholarPubMed
Bernard, J. A., Seidler, R. D., Hassevoort, K. M., Benson, B. L., Welsh, R. C., Wiggins, J. L., … Jonides, J. (2012). Resting state cortico-cerebellar functional connectivity networks: A comparison of anatomical and self-organizing map approaches. Frontiers in Neuroanatomy, 6, 31.CrossRefGoogle ScholarPubMed
Bolbecker, A. R., Westfall, D. R., Howell, J. M., Lackner, R. J., Carroll, C. A., O'Donnell, B. F., & Hetrick, W. P. (2014). Increased timing variability in schizophrenia and bipolar disorder. PLoS ONE, 9, e97964.CrossRefGoogle ScholarPubMed
Brady, R. O. Jr., Gonsalvez, I., Lee, I., Öngür, D., Seidman, L. J., Schmahmann, J. D., … Halko, M. A. (2019). Cerebellar-prefrontal network connectivity and negative symptoms in schizophrenia. American Journal of Psychiatry, 176, 512520.CrossRefGoogle Scholar
Breska, A., & Ivry, R. B. (2016). Taxonomies of timing: Where does the cerebellum fit in? Current Opinion in Behavioral Sciences, 8, 282288.CrossRefGoogle ScholarPubMed
Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6, 755.CrossRefGoogle ScholarPubMed
Cao, H., Chén, O. Y., Chung, Y., Forsyth, J. K., McEwen, S. C., Gee, D. G., … Cadenhead, K. S. (2018). Cerebello-thalamo-cortical hyperconnectivity as a state-independent functional neural signature for psychosis prediction and characterization. Nature Communications, 9, 3836.CrossRefGoogle ScholarPubMed
Carroll, C. A., Boggs, J., O'Donnell, B. F., Shekhar, A., & Hetrick, W. P. (2008). Temporal processing dysfunction in schizophrenia. Brain and Cognition, 67, 150161.CrossRefGoogle Scholar
Carroll, C. A., O'donnell, B. F., Shekhar, A., & Hetrick, W. P. (2009a). Timing dysfunctions in schizophrenia as measured by a repetitive finger tapping task. Brain and Cognition, 71, 345353.CrossRefGoogle Scholar
Carroll, C. A., O'Donnell, B. F., Shekhar, A., & Hetrick, W. P. (2009b). Timing dysfunctions in schizophrenia span from millisecond to several-second durations. Brain and Cognition, 70, 181190.CrossRefGoogle Scholar
Casini, L., & Ivry, R. B. (1999). Effects of divided attention on temporal processing in patients with lesions of the cerebellum or frontal lobe. Neuropsychology, 13, 10.CrossRefGoogle ScholarPubMed
Chai, X. J., Whitfield-Gabrieli, S., Shinn, A. K., Gabrieli, J. D., Castanón, A. N., McCarthy, J. M., … Öngür, D. (2011). Abnormal medial prefrontal cortex resting-state connectivity in bipolar disorder and schizophrenia. Neuropsychopharmacology, 36, 2009.CrossRefGoogle Scholar
Chumbley, J. R., & Friston, K. J. (2009). False discovery rate revisited: FDR and topological inference using Gaussian random fields. Neuroimage, 44, 6270.CrossRefGoogle ScholarPubMed
Church, R. M., & Deluty, M. Z. (1977). Bisection of temporal intervals. Journal of Experimental Psychology: Animal Behavior Processes, 3, 216.Google ScholarPubMed
Ciullo, V., Spalletta, G., Caltagirone, C., Jorge, R. E., & Piras, F. (2015). Explicit time deficit in schizophrenia: Systematic review and meta-analysis indicate it is primary and not domain specific. Schizophrenia Bulletin, 42, 505518.CrossRefGoogle Scholar
Corcoran, C., Keilp, J., Kayser, J., Klim, C., Butler, P., Bruder, G., … Javitt, D. (2015). Emotion recognition deficits as predictors of transition in individuals at clinical high risk for schizophrenia: A neurodevelopmental perspective. Psychological Medicine, 45, 29592973.CrossRefGoogle ScholarPubMed
Coull, J. T., Cheng, R.-K., & Meck, W. H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology, 36, 3.CrossRefGoogle ScholarPubMed
Dandash, O., Fornito, A., Lee, J., Keefe, R. S., Chee, M. W., Adcock, R. A., … Harrison, B. J. (2013). Altered striatal functional connectivity in subjects with an at-risk mental state for psychosis. Schizophrenia Bulletin, 40, 904913.CrossRefGoogle ScholarPubMed
Davalos, D. B., Rojas, D. C., & Tregellas, J. R. (2011). Temporal processing in schizophrenia: Effects of task-difficulty on behavioral discrimination and neuronal responses. Schizophrenia Research, 127, 123130.CrossRefGoogle ScholarPubMed
Dean, D. J., Bernard, J. A., Orr, J. M., Pelletier-Baldelli, A., Gupta, T., Carol, E. E., & Mittal, V. A. (2014). Cerebellar morphology and procedural learning impairment in neuroleptic-naive youth at ultrahigh risk of psychosis. Clinical Psychological Science, 2, 152164.CrossRefGoogle ScholarPubMed
Dean, D. J., & Mittal, V. A. (2015). Spontaneous parkinsonisms and striatal impairment in neuroleptic free youth at ultrahigh risk for psychosis. NPJ Schizophrenia, 1, 14006.CrossRefGoogle ScholarPubMed
Demirtas-Tatlidede, A., Freitas, C., Cromer, J. R., Safar, L., Ongur, D., Stone, W. S., … Pascual-Leone, A. (2010). Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophrenia Research, 124, 91100.CrossRefGoogle ScholarPubMed
Deshmukh, A., Rosenbloom, M. J., Pfefferbaum, A., & Sullivan, E. V. (2002). Clinical signs of cerebellar dysfunction in schizophrenia, alcoholism, and their comorbidity. Schizophrenia Research, 57, 281291.CrossRefGoogle ScholarPubMed
Diedrichsen, J. (2006). A spatially unbiased atlas template of the human cerebellum. Neuroimage, 33, 127138.CrossRefGoogle ScholarPubMed
Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., & Ramnani, N. (2009). A probabilistic MR atlas of the human cerebellum. Neuroimage, 46, 3946.CrossRefGoogle ScholarPubMed
Drake, R., Mueser, K., & McHugo, G. (1996). Clinician rating scales: Alcohol use scale (AUS), drug use scale (DUS), and substance abuse treatment scale (SATS). In Sederer, L. & Dickey, B. (Eds.), Outcomes Assessment in Clinical Practice (pp. 113116). Baltimore, MD: Williams and Wilkins.Google Scholar
Elvevåg, B., McCormack, T., Gilbert, A., Brown, G., Weinberger, D., & Goldberg, T. (2003). Duration judgements in patients with schizophrenia. Psychological Medicine, 33, 12491261.CrossRefGoogle ScholarPubMed
Fierro, B., Palermo, A., Puma, A., Francolini, M., Panetta, M., Daniele, O., & Brighina, F. (2007). Role of the cerebellum in time perception: A TMS study in normal subjects. Journal of the Neurological Sciences, 263, 107112.CrossRefGoogle ScholarPubMed
First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. (1995). Structured clinical interview for DSM-IV axis I disorders. New York: New York State Psychiatric Institute.Google Scholar
Freedman, B. J. (1974). The subjective experience of perceptual and cognitive disturbances in schizophrenia: A review of autobiographical accounts. Archives of General Psychiatry, 30, 333340.CrossRefGoogle ScholarPubMed
Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. Annals of the New York Academy of Sciences, 423, 5277.CrossRefGoogle ScholarPubMed
Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. Neuroimage, 48, 6372.CrossRefGoogle ScholarPubMed
Grube, M., Lee, K.-H., Griffiths, T. D., Barker, A. T., & Woodruff, P. W. (2010). Transcranial magnetic theta-burst stimulation of the human cerebellum distinguishes absolute, duration-based from relative, beat-based perception of subsecond time intervals. Frontiers in Psychology, 1, 171.CrossRefGoogle ScholarPubMed
Guell, X., Schmahmann, J. D., Gabrieli, J. D., & Ghosh, S. S. (2018). Functional gradients of the cerebellum. Elife, 688, 6275.Google Scholar
Gupta, T., Silverstein, S. M., Bernard, J. A., Keane, B. P., Papathomas, T. V., Pelletier-Baldelli, A., … Mittal, V. A. (2016). Disruptions in neural connectivity associated with reduced susceptibility to a depth inversion illusion in youth at ultra high risk for psychosis. NeuroImage: Clinical, 12, 681690.CrossRefGoogle ScholarPubMed
Harrington, D. L., Boyd, L. A., Mayer, A. R., Sheltraw, D. M., Lee, R. R., Huang, M., & Rao, S. M. (2004). Neural representation of interval encoding and decision making. Cognitive Brain Research, 21, 193205.CrossRefGoogle ScholarPubMed
Hicks, R. E., Gualtieri, T., Mayo, J. P. Jr., & Perez-Reyes, M. (1984). Cannabis, atropine, and temporal information processing. Neuropsychobiology, 12, 229237.CrossRefGoogle ScholarPubMed
Ivry, R. B., & Keele, S. W. (1989). Timing functions of the cerebellum. Journal of Cognitive Neuroscience, 1, 136152.CrossRefGoogle ScholarPubMed
Javitt, D. C., & Sweet, R. A. (2015). Auditory dysfunction in schizophrenia: Integrating clinical and basic features. Nature Reviews Neuroscience, 16, 535.CrossRefGoogle ScholarPubMed
Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17, 825841.CrossRefGoogle ScholarPubMed
Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5, 143156.CrossRefGoogle ScholarPubMed
Jönsson, E., Nöthen, M., Grünhage, F., Farde, L., Nakashima, Y., Propping, P., & Sedvall, G. (1999). Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Molecular Psychiatry, 4, 290.CrossRefGoogle ScholarPubMed
Jueptner, M., Rijntjes, M., Weiller, C., Faiss, J., Timmann, D., Mueller, S., & Diener, H. (1995). Localization of a cerebellar timing process using PET. Neurology, 45, 15401545.CrossRefGoogle ScholarPubMed
Kawashima, R., Okuda, J., Umetsu, A., Sugiura, M., Inoue, K., Suzuki, K., … Nagasaka, T. (2000). Human cerebellum plays an important role in memory-timed finger movement: An fMRI study. Journal of Neurophysiology, 83, 10791087.CrossRefGoogle Scholar
Kendler, K. S., & Schaffner, K. F. (2011). The dopamine hypothesis of schizophrenia: An historical and philosophical analysis. Philosophy, Psychiatry, & Psychology, 18, 4163.CrossRefGoogle Scholar
King, M., Hernandez-Castillo, C. R., Poldrack, R. A., Ivry, R. B., & Diedrichsen, J. (2019). Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nature Neuroscience, 22, 13711378.CrossRefGoogle ScholarPubMed
Koch, G., Oliveri, M., Torriero, S., Salerno, S., Gerfo, E. L., & Caltagirone, C. (2007). Repetitive TMS of cerebellum interferes with millisecond time processing. Experimental Brain Research, 179, 291299.CrossRefGoogle ScholarPubMed
Kopec, C. D., & Brody, C. D. (2010). Human performance on the temporal bisection task. Brain and Cognition, 74, 262272.CrossRefGoogle ScholarPubMed
Kunimatsu, J., Suzuki, T. W., Ohmae, S., & Tanaka, M. (2018). Different contributions of preparatory activity in the basal ganglia and cerebellum for self-timing. Elife, 7, e35676.CrossRefGoogle ScholarPubMed
Lee, K.-H., Dixon, J. K., Spence, S. A., & Woodruff, P. W. (2006). Time perception dysfunction in psychometric schizotypy. Personality and Individual Differences, 40, 13631373.CrossRefGoogle Scholar
Lee, K.-H., Egleston, P. N., Brown, W. H., Gregory, A. N., Barker, A. T., & Woodruff, P. W. (2007). The role of the cerebellum in subsecond time perception: Evidence from repetitive transcranial magnetic stimulation. Journal of Cognitive Neuroscience, 19, 147157.CrossRefGoogle ScholarPubMed
Lewis, P. A., & Miall, R. C. (2003a). Brain activation patterns during measurement of sub-and supra-second intervals. Neuropsychologia, 41, 15831592.CrossRefGoogle Scholar
Lewis, P. A., & Miall, R. C. (2003b). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13, 250255.CrossRefGoogle Scholar
Lieving, L. M., Lane, S. D., Cherek, D. R., & Tcheremissine, O. V. (2006). Effects of marijuana on temporal discriminations in humans. Behavioural Pharmacology, 17, 173183.CrossRefGoogle ScholarPubMed
Lutz, K., Specht, K., Shah, N. J., & JaÈncke, L. (2000). Tapping movements according to regular and irregular visual timing signals investigated with fMRI. Neuroreport, 11, 13011306.CrossRefGoogle ScholarPubMed
Mathalon, D. H., Roach, B. J., Ferri, J. M., Loewy, R. L., Stuart, B. K., Perez, V. B., … Ford, J. M. (2019). Deficient auditory predictive coding during vocalization in the psychosis risk syndrome and in early illness schizophrenia: The final expanded sample. Psychological Medicine, 49, 18971904.CrossRefGoogle ScholarPubMed
McGlashan, T., Walsh, B., & Woods, S. (2010). The psychosis-risk syndrome: Handbook for diagnosis and follow-up. New York, NY: Oxford University Press.Google Scholar
Meck, W. H. (2005). Neuropsychology of timing and time perception. Brain and Cognition, 58, 18.CrossRefGoogle ScholarPubMed
Meck, W. H., Penney, T. B., & Pouthas, V. (2008). Cortico-striatal representation of time in animals and humans. Current Opinion in Neurobiology, 18, 145152.CrossRefGoogle ScholarPubMed
Merchant, H., Harrington, D. L., & Meck, W. H. (2013). Neural basis of the perception and estimation of time. Annual Review of Neuroscience, 36, 313336.CrossRefGoogle ScholarPubMed
Miller, T. J., McGlashan, T. H., Woods, S. W., Stein, K., Driesen, N., Corcoran, C. M., … Davidson, L. (1999). Symptom assessment in schizophrenic prodromal states. Psychiatric Quarterly, 70, 273287.CrossRefGoogle ScholarPubMed
Minkowski, E. (1927). La schizophrénie. Psychopathologie des schizoïdes et des schizophrénes.Google Scholar
Mittal, V. A., Dean, D. J., Bernard, J. A., Orr, J. M., Pelletier-Baldelli, A., Carol, E. E., … Robustelli, B. L. (2013). Neurological soft signs predict abnormal cerebellar-thalamic tract development and negative symptoms in adolescents at high risk for psychosis: A longitudinal perspective. Schizophrenia Bulletin, 40, 12041215.CrossRefGoogle ScholarPubMed
Mittal, V. A., Neumann, C., Saczawa, M., & Walker, E. F. (2008). Longitudinal progression of movement abnormalities in relation to psychotic symptoms in adolescents at high risk of schizophrenia. Archives of General Psychiatry, 65, 165171.CrossRefGoogle ScholarPubMed
Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage, 44, 893905.CrossRefGoogle ScholarPubMed
Nieman, D. H., Ruhrmann, S., Dragt, S., Soen, F., van Tricht, M. J., Koelman, J. H., … Weiser, M. (2013). Psychosis prediction: Stratification of risk estimation with information-processing and premorbid functioning variables. Schizophrenia Bulletin, 40, 14821490.CrossRefGoogle ScholarPubMed
Ojeda, N., Ortuno, F., Arbizu, J., Lopez, P., Martí-Climent, J. M., Penuelas, I., & Cervera-Enguix, S. (2002). Functional neuroanatomy of sustained attention in schizophrenia: Contribution of parietal cortices. Human Brain Mapping, 17, 116130.CrossRefGoogle ScholarPubMed
Ortuño, F., Guillén-Grima, F., López-García, P., Gómez, J., & Pla, J. (2011). Functional neural networks of time perception: Challenge and opportunity for schizophrenia research. Schizophrenia Research, 125, 129135.CrossRefGoogle ScholarPubMed
Parker, K. L., Narayanan, N. S., & Andreasen, N. C. (2014). The therapeutic potential of the cerebellum in schizophrenia. Frontiers in Systems Neuroscience, 8, 163.CrossRefGoogle Scholar
Pelletier-Baldelli, A., Andrews-Hanna, J. R., & Mittal, V. A. (2018). Resting state connectivity dynamics in individuals at risk for psychosis. Journal of Abnormal Psychology, 127, 314.CrossRefGoogle ScholarPubMed
Penney, T. B., Meck, W. H., Roberts, S. A., Gibbon, J., & Erlenmeyer-Kimling, L. (2005). Interval-timing deficits in individuals at high risk for schizophrenia. Brain and Cognition, 58, 109118.CrossRefGoogle ScholarPubMed
Perez, V. B., Woods, S. W., Roach, B. J., Ford, J. M., McGlashan, T. H., Srihari, V. H., & Mathalon, D. H. (2014). Automatic auditory processing deficits in schizophrenia and clinical high-risk patients: Forecasting psychosis risk with mismatch negativity. Biological Psychiatry, 75, 459469.CrossRefGoogle ScholarPubMed
Pouthas, V., George, N., Poline, J. B., Pfeuty, M., VandeMoorteele, P. F., Hugueville, L., … Renault, B. (2005). Neural network involved in time perception: An fMRI study comparing long and short interval estimation. Human Brain Mapping, 25, 433441.CrossRefGoogle ScholarPubMed
Rao, S. M., Mayer, A. R., & Harrington, D. L. (2001). The evolution of brain activation during temporal processing. Nature Neuroscience, 4, 317.CrossRefGoogle ScholarPubMed
Reed, P., & Randell, J. (2014). Altered time-perception performance in individuals with high schizotypy levels. Psychiatry Research, 220, 211216.CrossRefGoogle ScholarPubMed
Salman, M. S. (2002). Topical review: The cerebellum: It's about time! but timing is not everything-new insights into the role of the cerebellum in timing motor and cognitive tasks. Journal of Child Neurology, 17, 19.CrossRefGoogle Scholar
Schmahmann, J. D. (2018). The cerebellum and cognition. Neuroscience Letters.Google ScholarPubMed
Schmahmann, J. D., & Pandya, D. N. (2008). Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Cortex, 44, 10371066.CrossRefGoogle ScholarPubMed
Solowij, N., Yücel, M., Respondek, C., Whittle, S., Lindsay, E., Pantelis, C., & Lubman, D. (2011). Cerebellar white-matter changes in cannabis users with and without schizophrenia. Psychological Medicine, 41, 23492359.CrossRefGoogle ScholarPubMed
Stanghellini, G., Ballerini, M., Presenza, S., Mancini, M., Raballo, A., Blasi, S., & Cutting, J. (2015). Psychopathology of lived time: Abnormal time experience in persons with schizophrenia. Schizophrenia Bulletin, 42, 4555.Google ScholarPubMed
Stoodley, C. J. (2012). The cerebellum and cognition: Evidence from functional imaging studies. The Cerebellum, 11, 352365.CrossRefGoogle ScholarPubMed
Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2012). Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study. Neuroimage, 59, 15601570.CrossRefGoogle Scholar
Teki, S., Grube, M., & Griffiths, T. D. (2012). A unified model of time perception accounts for duration-based and beat-based timing mechanisms. Frontiers in Integrative Neuroscience, 5, 90.CrossRefGoogle ScholarPubMed
Thoenes, S., & Oberfeld, D. (2017). Meta-analysis of time perception and temporal processing in schizophrenia: Differential effects on precision and accuracy. Clinical Psychology Review, 54, 4464.CrossRefGoogle ScholarPubMed
Thomas, M. L., Green, M. F., Hellemann, G., Sugar, C. A., Tarasenko, M., Calkins, M. E., … Lazzeroni, L. C. (2017). Modeling deficits from early auditory information processing to psychosocial functioning in schizophrenia. JAMA Psychiatry, 74, 3746.CrossRefGoogle Scholar
Tinklenberg, J. R., Roth, W. T., & Kopell, B. S. (1976). Marijuana and ethanol: Differential effects on time perception, heart rate, and subjective response. Psychopharmacology, 49, 275279.CrossRefGoogle ScholarPubMed
Tregellas, J. R., Davalos, D. B., & Rojas, D. C. (2006). Effect of task difficulty on the functional anatomy of temporal processing. Neuroimage, 32, 307315.CrossRefGoogle ScholarPubMed
Turetsky, B. I., Bilker, W. B., Siegel, S. J., Kohler, C. G., & Gur, R. E. (2009). Profile of auditory information-processing deficits in schizophrenia. Psychiatry Research, 165, 2737.CrossRefGoogle Scholar
Volz, H.-P., Nenadic, I., Gaser, C., Rammsayer, T., Häger, F., & Sauer, H. (2001). Time estimation in schizophrenia: An fMRI study at adjusted levels of difficulty. Neuroreport, 12, 313316.CrossRefGoogle ScholarPubMed
Whitfield-Gabrieli, S., & Ford, J. M. (2012). Default mode network activity and connectivity in psychopathology. Annual Review of Clinical Psychology, 8, 4976.CrossRefGoogle ScholarPubMed
Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2, 125141.CrossRefGoogle ScholarPubMed
Wiener, M., Lohoff, F. W., & Coslett, H. B. (2011). Double dissociation of dopamine genes and timing in humans. Journal of Cognitive Neuroscience, 23, 28112821.CrossRefGoogle ScholarPubMed
Zhuo, C., Wang, C., Wang, L., Guo, X., Xu, Q., Liu, Y., & Zhu, J. (2018). Altered resting-state functional connectivity of the cerebellum in schizophrenia. Brain Imaging and Behavior, 12, 383389.CrossRefGoogle Scholar
Supplementary material: File

Osborne et al. supplementary material

Osborne et al. supplementary material

Download Osborne et al. supplementary material(File)
File 23.8 KB