Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T10:27:12.767Z Has data issue: false hasContentIssue false

Altered prefrontal activation during the inhibition of eating responses in women with bulimia nervosa

Published online by Cambridge University Press:  25 February 2022

Laura A. Berner*
Affiliation:
Icahn School of Medicine at Mount Sinai, New York, NY, USA
Samantha R. Winter
Affiliation:
Google Health, Google LLC, Mountain View, CA, USA
Hasan Ayaz
Affiliation:
Drexel University, Philadelphia, PA, USA University of Pennsylvania, Philadelphia, PA, USA Center for Injury Research and Prevention at Children's Hospital of Philadelphia, Philadelphia, PA, USA
Patricia A. Shewokis
Affiliation:
Drexel University, Philadelphia, PA, USA
Meltem Izzetoglu
Affiliation:
Villanova University, Villanova, PA, USA
Rachel Marsh
Affiliation:
Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
Jennifer A. Nasser
Affiliation:
Drexel University, Philadelphia, PA, USA
Alyssa J. Matteucci
Affiliation:
The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
Michael R. Lowe
Affiliation:
Drexel University, Philadelphia, PA, USA
*
Author for correspondence: Laura A. Berner, E-mail: laura.berner@mssm.edu

Abstract

Background

The sense of ‘loss of control’ (LOC), or a feeling of being unable to stop eating or control what or how much one is eating, is the most salient aspect of binge eating. However, the neural alterations that may contribute to this experience and eating behavior remain poorly understood.

Methods

We used functional near-infrared spectroscopy (fNIRS) to measure activation in the prefrontal cortices of 23 women with bulimia nervosa (BN) and 23 healthy controls (HC) during two tasks: a novel go/no-go task requiring inhibition of eating responses, and a standard go/no-go task requiring inhibition of button-pressing responses.

Results

Women with BN made more commission errors on both tasks. BN subgroups with the most severe LOC eating (n = 12) and those who felt most strongly that they binge ate during the task (n = 12) showed abnormally reduced bilateral ventromedial prefrontal cortex (vmPFC) and right ventrolateral prefrontal cortex (vlPFC) activation associated with eating-response inhibition. In the entire BN sample, lower eating-task activation in right vlPFC was related to more frequent and severe LOC eating, but no group differences in activation were detected on either task when this full sample was compared with HC. BN severity was unrelated to standard-task activation.

Conclusions

Results provide initial evidence that diminished PFC activation may directly contribute to more severe eating-specific control deficits in BN. Our findings support vmPFC and vlPFC dysfunction as promising treatment targets, and indicate that eating-specific tasks and fNIRS may be useful tools for identifying neural mechanisms underlying dysregulated eating.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: Fifth edition (DSM-5). Washington, DC: American Psychiatric Association.Google Scholar
Ayaz, H. (2010). Functional near-infrared spectroscopy-based brain-computer interface (p. 214). Philadelphia, PA: Drexel University.Google Scholar
Ayaz, H., Izzetoglu, M., Platek, S. M., Bunce, S., Izzetoglu, K., Pourrezaei, K., & Onaral, B. (2006, August 30 2006–September 3 2006). Registering fNIR data to brain surface image using MRI templates. Paper presented at the Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE.CrossRefGoogle Scholar
Ayaz, H., Izzetoglu, M., Shewokis, P. A., & Onaral, B. (2010). Sliding-window motion artifact rejection for functional near-infrared spectroscopy. Conference Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2010, 65676570. https://doi.org/10.1109/iembs.2010.5627113.Google ScholarPubMed
Ayaz, H., Shewokis, P. A., Curtin, A., Izzetoglu, M., Izzetoglu, K., & Onaral, B. (2011). Using MazeSuite and functional near-infrared spectroscopy to study learning in spatial navigation. Journal of Visualized Experiments, 8(56), 3443. https://doi.org/10.3791/3443.Google Scholar
Balodis, I. M., Molina, N. D., Kober, H., Worhunsky, P. D., White, M. A., Sinha, R., … Potenza, M. N. (2013). Divergent neural substrates of inhibitory control in binge eating disorder relative to other manifestations of obesity. Obesity (Silver Spring, Md.), 21(2), 367377. https://doi.org/10.1002/oby.20068.CrossRefGoogle ScholarPubMed
Bardone-Cone, A. M., Maldonado, C. R., Crosby, R. D., Mitchell, J. E., Wonderlich, S. A., Joiner, T. E. Jr. … Le Grange, D. (2008). Revisiting differences in individuals with bulimia nervosa with and without a history of anorexia nervosa: Eating pathology, personality, and maltreatment. International Journal of Eating Disorders, 41(8), 697704.CrossRefGoogle ScholarPubMed
Bartholdy, S., O'Daly, O. G., Campbell, I. C., Banaschewski, T., Barker, G., Bokde, A. L. W., … Stedman, A. (2019). Neural correlates of failed inhibitory control as an early marker of disordered eating in adolescents. Biological Psychiatry, 85(11), 956965. https://doi.org/10.1016/j.biopsych.2019.01.027.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., & Damasio, A. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex (New York, N.Y.: 1991), 10(3), 295307.CrossRefGoogle ScholarPubMed
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289300. https://doi.org/10.2307/2346101.CrossRefGoogle Scholar
Berner, L. A., Stefan, M., Lee, S., Wang, Z., Terranova, K., Attia, E., & Marsh, R. (2018). Altered cortical thickness and attentional deficits in adolescent girls and women with bulimia nervosa. Journal of Psychiatry & Neuroscience: JPN, 43(3), 151160. https://doi.org/10.1503/jpn.170070.CrossRefGoogle ScholarPubMed
Berner, L. A., Winter, S. R., Matheson, B. E., Benson, L., & Lowe, M. R. (2017). Behind binge eating: A review of food-specific adaptations of neurocognitive and neuroimaging tasks. Physiology & Behavior, 176, 5970.CrossRefGoogle ScholarPubMed
Blomquist, K. K., Roberto, C. A., Barnes, R. D., White, M. A., Masheb, R. M., & Grilo, C. M. (2014). Development and validation of the eating loss of control scale. Psychological Assessment, 26(1), 7789. https://doi.org/10.1037/a0034729.CrossRefGoogle ScholarPubMed
Bodell, L. P., & Keel, P. K. (2015). Weight suppression in bulimia nervosa: Associations with biology and behavior. Journal of Abnormal Psychology, 124(4), 9941002. https://doi.org/10.1037/abn0000077.CrossRefGoogle ScholarPubMed
Bohon, C., & Stice, E. (2011). Reward abnormalities among women with full and subthreshold bulimia nervosa: A functional magnetic resonance imaging study. International Journal of Eating Disorders, 44(7), 585595. https://doi.org/10.1002/eat.20869.CrossRefGoogle ScholarPubMed
Broft, A., Shingleton, R., Kaufman, J., Liu, F., Kumar, D., Slifstein, M., … Walsh, B. T. (2012). Striatal dopamine in bulimia nervosa: A PET imaging study. International Journal of Eating Disorders, 45(5), 648656. https://doi.org/10.1002/eat.20984.CrossRefGoogle ScholarPubMed
Chambers, C. D., Bellgrove, M. A., Stokes, M. G., Henderson, T. R., Garavan, H., Robertson, I. H., … Mattingley, J. B. (2006). Executive “brake failure” following deactivation of human frontal lobe. Journal of Cognitive Neuroscience, 18(3), 444455. https://doi.org/10.1162/jocn.2006.18.3.444.Google ScholarPubMed
Chami, R., Cardi, V., Lawrence, N., MacDonald, P., Rowlands, K., Hodsoll, J., & Treasure, J. (2020). Targeting binge eating in bulimia nervosa and binge eating disorder using inhibitory control training and implementation intentions: A feasibility trial. Psychological Medicine, 110. https://doi.org/10.1017/S0033291720002494.Google ScholarPubMed
Chudasama, Y., & Robbins, T. W. (2006). Functions of frontostriatal systems in cognition: Comparative neuropsychopharmacological studies in rats, monkeys and humans. Biological Psychology, 73(1), 1938.CrossRefGoogle ScholarPubMed
Cui, X., Bray, S., Bryant, D. M., Glover, G. H., & Reiss, A. L. (2011). A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage, 54(4), 28082821.CrossRefGoogle ScholarPubMed
Cyr, M., Kopala-Sibley, D. C., Lee, S., Chen, C., Stefan, M., Fontaine, M., … Marsh, R. (2017). Reduced inferior and orbital frontal thickness in adolescent bulimia nervosa persists over two-year follow-up. Journal of the American Academy of Child & Adolescent Psychiatry, 56(10), 866874.e867. https://doi.org/10.1016/j.jaac.2017.08.008.CrossRefGoogle ScholarPubMed
Cyr, M., Yang, X., Horga, G., & Marsh, R. (2018). Abnormal fronto-striatal activation as a marker of threshold and subthreshold bulimia nervosa. Human Brain Mapping, 39(4), 17961804. https://doi.org/10.1002/hbm.23955.CrossRefGoogle ScholarPubMed
Del Parigi, A., Chen, K., Gautier, J., Salbe, A., Pratley, R., Ravussin, E., & Tataranni, P. (2002). Sex differences in the human brain's response to hunger and satiation. American Journal of Clinical Nutrition, 75(6), 10171022.CrossRefGoogle ScholarPubMed
Dunlop, K. A., Woodside, B., & Downar, J. (2016). Targeting neural endophenotypes of eating disorders with non-invasive brain stimulation. Frontiers in Neuroscience, 10(30). https://doi.org/10.3389/fnins.2016.00030.CrossRefGoogle ScholarPubMed
Ehlis, A.-C., Schneider, S., Dresler, T., & Fallgatter, A. J. (2014). Application of functional near-infrared spectroscopy in psychiatry. Neuroimage, 85, 478488. https://doi.org/10.1016/j.neuroimage.2013.03.067.CrossRefGoogle ScholarPubMed
Fairburn, C. G., Cooper, Z., & O'Connor, M. (2008). Eating disorder examination (edition 16.0D). In Fairburn, C. G. (Ed.), Cognitive behavior therapy and eating disorders (pp. 270306). New York: Guilford Press.Google ScholarPubMed
Fellows, L. K., & Farah, M. J. (2007). The role of ventromedial prefrontal cortex in decision making: Judgment under uncertainty or judgment per se? Cerebral Cortex, 17(11), 26692674. https://doi.org/10.1093/cercor/bhl176.CrossRefGoogle ScholarPubMed
Frank, G. K. W., Reynolds, J., Shott, M., & O'Reilly, R. (2011). Altered temporal difference learning in bulimia nervosa. Biological Psychiatry, 70(8), 728735. https://doi.org/10.1016/j.biopsych.2011.05.011.CrossRefGoogle ScholarPubMed
Frank, G. K. W., Wagner, A., Achenbach, S., McConaha, C., Skovira, K., Aizenstein, H., … Kaye, W. H. (2006). Altered brain activity in women recovered from bulimic-type eating disorders after a glucose challenge: A pilot study. International Journal of Eating Disorders, 39(1), 7679.CrossRefGoogle ScholarPubMed
Goldschmidt, A. B. (2017). Are loss of control while eating and overeating valid constructs? A critical review of the literature. Obesity Reviews, 18(4), 412449. https://doi.org/10.1111/obr.12491.CrossRefGoogle ScholarPubMed
Goldschmidt, A. B., Dickstein, D. P., MacNamara, A. E., Phan, K. L., O'Brien, S., Le Grange, D., … Keedy, S. (2018). A pilot study of neural correlates of loss of control eating in children with overweight/obesity: Probing intermittent access to food as a means of eliciting disinhibited eating. Journal of Pediatric Psychology, 43(8), 846855. https://doi.org/10.1093/jpepsy/jsy009.CrossRefGoogle ScholarPubMed
Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J., & Owen, A. M. (2010). The role of the right inferior frontal gyrus: Inhibition and attentional control. Neuroimage, 50, 13131319.CrossRefGoogle ScholarPubMed
Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science (New York, N.Y.), 324(5927), 646648. https://doi.org/10.1126/science.1168450.CrossRefGoogle ScholarPubMed
He, Q., Huang, X., Zhang, S., Turel, O., Ma, L., & Bechara, A. (2019). Dynamic causal modeling of insular, striatal, and prefrontal cortex activities during a food-specific Go/NoGo task. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(12), 10801089.Google ScholarPubMed
Hildebrandt, T., & Latner, J. (2006). Effect of self-monitoring on binge eating: Treatment response or ‘binge drift’? European Eating Disorders Review: The Professional Journal of the Eating Disorders Association, 14(1), 1722.CrossRefGoogle Scholar
Huhn, A. S., Sweeney, M. M., Brooner, R. K., Kidorf, M. S., Tompkins, D. A., Ayaz, H., & Dunn, K. E. (2019). Prefrontal cortex response to drug cues, craving, and current depressive symptoms are associated with treatment outcomes in methadone-maintained patients. Neuropsychopharmacology, 44(4), 826833. https://doi.org/10.1038/s41386-018-0252-0.CrossRefGoogle ScholarPubMed
Izzetoglu, M., Chitrapu, P., Bunce, S., & Onaral, B. (2010). Motion artifact cancellation in NIR spectroscopy using discrete Kalman filtering. Biomedical Engineering Online, 9(1), 16.CrossRefGoogle ScholarPubMed
Kekic, M., McClelland, J., Bartholdy, S., Boysen, E., Musiat, P., Dalton, B., … Schmidt, U. (2017). Single-session transcranial direct current stimulation temporarily improves symptoms, mood, and self-regulatory control in bulimia nervosa: A randomised controlled trial. PLoS One, 12(1), e0167606. https://doi.org/10.1371/journal.pone.0167606.CrossRefGoogle ScholarPubMed
Kissileff, H. R., Walsh, B. T., Kral, J. G., & Cassidy, S. M. (1986). Laboratory studies of eating behavior in women with bulimia. Physiology & Behavior, 38, 563570.CrossRefGoogle ScholarPubMed
Kissileff, H. R., Zimmerli, E., Torres, M. I., Devlin, M. J., & Walsh, B. T. (2008). Effect of eating rate on binge size in bulimia nervosa. Physiology & Behavior, 93, 481485.CrossRefGoogle ScholarPubMed
Kober, H., Mende-Siedlecki, P., Kross, E. F., Weber, J., Mischel, W., Hart, C. L., & Ochsner, K. N. (2010). Prefrontal–striatal pathway underlies cognitive regulation of craving. Proceedings of the National Academy of Sciences, 107(33), 1481114816. https://doi.org/10.1073/pnas.1007779107.CrossRefGoogle ScholarPubMed
LaChaussee, J. L., Kissileff, H. R., Walsh, B. T., & Hadigan, C. M. (1992). The single-item meal as a measure of binge-eating behavior in patients with bulimia nervosa. Physiology & Behavior, 51(3), 593600.CrossRefGoogle ScholarPubMed
Linardon, J., & Wade, T. D. (2018). How many individuals achieve symptom abstinence following psychological treatments for bulimia nervosa? A meta-analytic review. The International Journal of Eating Disorders, 51(4), 287294. https://doi.org/10.1002/eat.22838.CrossRefGoogle ScholarPubMed
Manasse, Stephanie M, Lampe, Elizabeth W., Gillikin, Lindsay, Payne‐Reichert, Adam, Zhang, Fengqing, Juarascio, Adrienne S, … Forman, Evan M.. (2020). The project REBOOT protocol: Evaluating a personalized inhibitory control training as an adjunct to cognitive behavioral therapy for bulimia nervosa and binge‐eating disorder. International Journal of Eating Disorders, 53(6), 10071013. https://doi.org/10.1002/eat.v53.6.CrossRefGoogle Scholar
Marsh, R., Horga, G., Wang, Z., Wang, P., Klahr, K. W., Berner, L. A., … Peterson, B. S. (2011). An fMRI study of self-regulatory control and conflict resolution in adolescents with bulimia nervosa. American Journal of Psychiatry, 168(11), 12101220. https://doi.org/10.1176/appi.ajp.2011.11010094.CrossRefGoogle ScholarPubMed
Marsh, R., Stefan, M., Bansal, R., Hao, X., Walsh, B. T., & Peterson, B. S. (2015). Anatomical characteristics of the cerebral surface in bulimia nervosa. Biological Psychiatry, 77(7), 616623. https://doi.org/10.1016/j.biopsych.2013.07.017.CrossRefGoogle ScholarPubMed
Marsh, R., Steinglass, J. E., Gerber, A. J., O'Leary, K. G., Walsh, B. T., & Peterson, B. S. (2009). Deficient activity in the neural systems that mediate self-regulatory control in bulimia nervosa. Archives of General Psychiatry, 66(1), 113.CrossRefGoogle ScholarPubMed
Metropolitan Life Insurance Company. (1959). New weight standards for men and women. Statistical Bulletin, 40, 14.Google Scholar
Meyer, H. C., & Bucci, D. J. (2016). Imbalanced activity in the orbitofrontal cortex and nucleus accumbens impairs behavioral inhibition. Current Biology: CB, 26(20), 28342839. https://doi.org/10.1016/j.cub.2016.08.034.CrossRefGoogle ScholarPubMed
Milner, B. (1995). Aspects of human frontal lobe function. In Goldman-Rakic, P. (Ed.), Epilepsy and the functional anatomy of the frontal lobe (pp. 6784). New York, NY: Raven Press.Google Scholar
Mond, J., Latner, J., Hay, P., Owen, C., & Rodgers, B. (2010). Objective and subjective bulimic episodes in the classification of bulimic-type eating disorders: Another nail in the coffin of a problematic distinction. Behaviour Research and Therapy, 48(7), 661669. https://doi.org/10.1016/j.brat.2010.03.020.CrossRefGoogle ScholarPubMed
Morein-Zamir, S., Dodds, C., van Hartevelt, T. J., Schwarzkopf, W., Sahakian, B., Muller, U., & Robbins, T. (2014). Hypoactivation in right inferior frontal cortex is specifically associated with motor response inhibition in adult ADHD. Human Brain Mapping, 35(10), 51415152. https://doi.org/10.1002/hbm.22539.CrossRefGoogle ScholarPubMed
Morein-Zamir, S., & Robbins, T. W. (2015). Fronto-striatal circuits in response-inhibition: Relevance to addiction. Brain Research, 1628(Pt A), 117129. https://doi.org/10.1016/j.brainres.2014.09.012.CrossRefGoogle ScholarPubMed
Moriguchi, Y., Noda, T., Nakayashiki, K., Takata, Y., Setoyama, S., Kawasaki, S., … Hanakawa, T. (2017). Validation of brain-derived signals in near-infrared spectroscopy through multivoxel analysis of concurrent functional magnetic resonance imaging. Human Brain Mapping, 38(10), 52745291. https://doi.org/10.1002/hbm.23734.CrossRefGoogle ScholarPubMed
Niego, S., Pratt, E., & Agras, W. (1998). Subjective or objective binge: Is the distinction valid? The International Journal of Eating Disorders, 22(3), 291298.3.0.CO;2-I>CrossRefGoogle Scholar
Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., … Dan, I. (2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage, 21(1), 99111. https://doi.org/10.1016/j.neuroimage.2003.08.026.CrossRefGoogle ScholarPubMed
Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., & Burgess, P. W. (2020). The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Annals of the New York Academy of Sciences, 1464(1), 529. https://doi.org/10.1111/nyas.13948.CrossRefGoogle ScholarPubMed
Racine, S. E., Horvath, S. A., Brassard, S. L., & Benning, S. D. (2019). Effort expenditure for rewards task modified for food: A novel behavioral measure of willingness to work for food. International Journal of Eating Disorders, 52(1), 7178. https://doi.org/10.1002/eat.22999.CrossRefGoogle Scholar
Reber, J., Feinstein, J. S., O'Doherty, J. P., Liljeholm, M., Adolphs, R., & Tranel, D. (2017). Selective impairment of goal-directed decision-making following lesions to the human ventromedial prefrontal cortex. Brain, 140(6), 17431756. https://doi.org/10.1093/brain/awx105.CrossRefGoogle Scholar
Rodrigo, A. H., Di Domenico, S. I., Ayaz, H., Gulrajani, S., Lam, J., & Ruocco, A. C. (2014). Differentiating functions of the lateral and medial prefrontal cortex in motor response inhibition. Neuroimage, 85(Part 1), 423431. https://doi.org/10.1016/j.neuroimage.2013.01.059.CrossRefGoogle Scholar
Rösch, S. A., Schmidt, R., Lührs, M., Ehlis, A.-C., Hesse, S., & Hilbert, A. (2021). Evidence of fNIRS-based prefrontal cortex hypoactivity in obesity and binge-eating disorder. Brain Sciences, 11(1), 19.CrossRefGoogle Scholar
Ruocco, A. C., Rodrigo, A. H., McMain, S. F., Page-Gould, E., Ayaz, H., & Links, P. S. (2016). Predicting treatment outcomes from prefrontal cortex activation for self-harming patients with borderline personality disorder: A preliminary study. Frontiers in Human Neuroscience, 10, 220. https://doi.org/10.3389/fnhum.2016.00220.CrossRefGoogle ScholarPubMed
Schebendach, J., Broft, A., Foltin, R. W., & Walsh, B. T. (2013). Can the reinforcing value of food be measured in bulimia nervosa? Appetite, 62, 7075. https://doi.org/10.1016/j.appet.2012.11.009.CrossRefGoogle ScholarPubMed
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59(Suppl 20), 2233.Google ScholarPubMed
Siep, N., Roefs, A., Roebroeck, A., Havermans, R., Bonte, M., & Jansen, A. (2012). Fighting food temptations: The modulating effects of short-term cognitive reappraisal, suppression and up-regulation on mesocorticolimbic activity related to appetitive motivation. Neuroimage, 60(1), 213220.CrossRefGoogle ScholarPubMed
Skunde, M., Walther, S., Simon, J. J., Wu, M., Bendszus, M., Herzog, W., & Friederich, H.-C. (2016). Neural signature of behavioural inhibition in women with bulimia nervosa. Journal of Psychiatry & Neuroscience: JPN, 41(5), E69.CrossRefGoogle ScholarPubMed
Steinglass, J. E., & Foerde, K. (2018). Reward system abnormalities in anorexia nervosa: Navigating a path forward. JAMA Psychiatry, 75(10), 993994. https://doi.org/10.1001/jamapsychiatry.2018.1924.CrossRefGoogle ScholarPubMed
Uher, R., Murphy, T., Brammer, M. J., Dalgleish, T., Phillips, M. L., Ng, V. W., … Treasure, J. (2004). Medial prefrontal cortex activity associated with symptom provocation in eating disorders. American Journal of Psychiatry, 161, 12381246.CrossRefGoogle ScholarPubMed
Van den Eynde, F., Claudino, A. M., Mogg, A., Horrell, L., Stahl, D., Ribeiro, W., … Schmidt, U. (2010). Repetitive transcranial magnetic stimulation reduces cue-induced food craving in bulimic disorders. Biological Psychiatry, 67(8), 793795.CrossRefGoogle ScholarPubMed
Van den Eynde, F., & Treasure, J. (2009). Neuroimaging in eating disorders and obesity: Implications for research. Child and Adolescent Psychiatric Clinics of North America, 18(1), 95115.CrossRefGoogle ScholarPubMed
Walpoth, M., Hoertnagl, C., Mangweth-Matzek, B., Kemmler, G., Hinterhölzl, J., Conca, A., & Hausmann, A. (2008). Repetitive transcranial magnetic stimulation in bulimia nervosa: Preliminary results of a single-centre, randomised, double-blind, sham-controlled trial in female outpatients. Psychotherapy and Psychosomatics, 77(1), 5760.CrossRefGoogle ScholarPubMed
Wechsler, D. (2011). Wechsler abbreviated scale of intelligence – second edition (WASI-II). San Antonio, TX: NCS Pearson.Google Scholar
Westwater, M. L., Seidlitz, J., Diederen, K. M. J., Fischer, S., & Thompson, J. C. (2018). Associations between cortical thickness, structural connectivity and severity of dimensional bulimia nervosa symptomatology. Psychiatry Research: Neuroimaging, 271, 118125. https://doi.org/10.1016/j.pscychresns.2017.11.006.CrossRefGoogle ScholarPubMed
World Health Organization. (2018). International classification of diseases for mortality and morbidity statistics (11th Revision). Retrieved from https://icd.who.int/browse11/l-m/en.Google Scholar
Wriessnegger, S., Bauernfeind, G., Schweitzer, K., Kober, S., Neuper, C., & Mueller-Putz, G. (2012). The interplay of prefrontal and sensorimotor cortices during inhibitory control of learned motor behavior. Frontiers in Neuroengineering, 5(17). https://doi.org/doi:10.3389/fneng.2012.00017.CrossRefGoogle ScholarPubMed
Wu, M., Hartmann, M., Skunde, M., Herzog, W., & Friederich, H.-C. (2013). Inhibitory control in bulimic-type eating disorders: A systematic review and meta-analysis. PLoS One, 8(12), e83412. https://doi.org/10.1371/journal.pone.0083412.CrossRefGoogle ScholarPubMed
Zimmerli, E., Devlin, M. J., Kissileff, H. R., & Walsh, B. T. (2010). The development of satiation in bulimia nervosa. Physiology & Behavior, 100, 346349. https://doi.org/10.1016/j.physbeh.2010.03.010.CrossRefGoogle ScholarPubMed
Supplementary material: File

Berner et al. supplementary material

Berner et al. supplementary material

Download Berner et al. supplementary material(File)
File 3 MB