Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T14:53:23.181Z Has data issue: false hasContentIssue false

An individualized treatment rule to optimize probability of remission by continuation, switching, or combining antidepressant medications after failing a first-line antidepressant in a two-stage randomized trial

Published online by Cambridge University Press:  08 March 2021

Ronald C. Kessler*
Affiliation:
Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts, USA
Toshi A. Furukawa
Affiliation:
Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan
Tadashi Kato
Affiliation:
Aratama Kokorono Clinic, Nagoya, Japan
Alex Luedtke
Affiliation:
Department of Statistics, University of Washington, Seattle, Washington, USA Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
Maria Petukhova
Affiliation:
Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts, USA
Ekaterina Sadikova
Affiliation:
Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts, USA Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
Nancy A. Sampson
Affiliation:
Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts, USA
*
Author for correspondence: Ronald C. Kessler, E-mail: Kessler@hcp.med.harvard.edu

Abstract

Background

There is growing interest in using composite individualized treatment rules (ITRs) to guide depression treatment selection, but best approaches for doing this are not widely known. We develop an ITR for depression remission based on secondary analysis of a recently published trial for second-line antidepression medication selection using a cutting-edge ensemble machine learning method.

Methods

Data come from the SUN(^_^)D trial, an open-label, assessor blinded pragmatic trial of previously-untreated patients with major depressive disorder from 48 clinics in Japan. Initial clinic-level randomization assigned patients to 50 or 100 mg/day sertraline. We focus on the 1549 patients who failed to remit within 3 weeks and were then rerandomized at the individual-level to continuation with sertraline, switching to mirtazapine, or combining mirtazapine with sertraline. The outcome was remission 9 weeks post-baseline. Predictors included socio-demographics, clinical characteristics, baseline symptoms, changes in symptoms between baseline and week 3, and week 3 side effects.

Results

Optimized treatment was associated with significantly increased cross-validated week 9 remission rates in both samples [5.3% (2.4%), p = 0.016 50 mg/day sample; 5.1% (2.7%), p = 0.031 100 mg/day sample] compared to randomization (30.1–30.8%). Optimization was also associated with significantly increased remission in both samples compared to continuation [24.7% in both: 11.2% (3.8%), p = 0.002 50 mg/day sample; 11.7% (3.9%), p = 0.001 100 mg/day sample]. Non-significant gains were found for optimization compared to switching or combining.

Conclusions

An ITR can be developed to improve second-line antidepressant selection, but replication in a larger study with more comprehensive baseline predictors might produce stronger and more stable results.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Dr Kessler and Dr Furukawa contributed equally to this manuscript as co-first authors.

References

Akechi, T., Kato, T., Watanabe, N., Tanaka, S., & Furukawa, T. A. (2019a). Predictors of hypomanic and/or manic switch among patients initially diagnosed with unipolar major depression during acute-phase antidepressants treatment. Psychiatry and Clinical Neurosciences, 73(2), 9091. doi:10.1111/pcn.12808.CrossRefGoogle ScholarPubMed
Akechi, T., Mantani, A., Kurata, K., Hirota, S., Shimodera, S., Yamada, M., … Furukawa, T. A. (2019b). Predicting relapse in major depression after successful initial pharmacological treatment. Journal of Affective Disorders, 250, 108113. doi:10.1016/j.jad.2019.03.004.CrossRefGoogle ScholarPubMed
Akechi, T., Sugishita, K., Chino, B., Itoh, K., Ikeda, Y., Shimodera, S., … Furukawa, T. A. (2020). Whose depression deteriorates during acute phase antidepressant treatment? Journal of Affective Disorders, 260, 342348. doi:10.1016/j.jad.2019.09.052.CrossRefGoogle ScholarPubMed
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck depression inventory-II. San Antonio, TX: Psychological Corporation.Google Scholar
Cohen, Z. D., & DeRubeis, R. J. (2018). Treatment selection in depression. Annual Review of Clinical Psychology, 14, 209236. doi:10.1146/annurev-clinpsy-050817-084746.CrossRefGoogle ScholarPubMed
Collins, G. S., Reitsma, J. B., Altman, D. G., & Moons, K. G. (2015). Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. Annals of Internal Medicine, 162(1), 5563. doi:10.7326/M14-0697.CrossRefGoogle ScholarPubMed
Costello, A. B., & Osborne, J. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research & Evaluation, 10(7), 19. doi:10.7275/jyj1-4868.Google Scholar
Cuijpers, P., Noma, H., Karyotaki, E., Vinkers, C. H., Cipriani, A., & Furukawa, T. A. (2020). A network meta-analysis of the effects of psychotherapies, pharmacotherapies and their combination in the treatment of adult depression. World Psychiatry, 19(1), 92107. doi:10.1002/wps.20701.CrossRefGoogle ScholarPubMed
Ermers, N. J., Hagoort, K., & Scheepers, F. E. (2020). The predictive validity of machine learning models in the classification and treatment of major depressive disorder: State of the art and future directions. Frontiers in Psychiatry, 11, 472. doi:10.3389/fpsyt.2020.00472.CrossRefGoogle ScholarPubMed
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 122. doi:10.18637/jss.v033.i01.CrossRefGoogle ScholarPubMed
Frodl, T. (2017). Recent advances in predicting responses to antidepressant treatment. F1000Research, 6, (F1000 Faculty Rev), 619. doi:10.12688/f1000research.10300.1.CrossRefGoogle ScholarPubMed
Funk, M. J., Westreich, D., Wiesen, C., Stürmer, T., Brookhart, M. A., & Davidian, M. (2011). Doubly robust estimation of causal effects. American Journal of Epidemiology, 173(7), 761767. doi:10.1093/aje/kwq439.CrossRefGoogle ScholarPubMed
Furukawa, T. A., Akechi, T., Shimodera, S., Yamada, M., Miki, K., Watanabe, N., … Yonemoto, N. (2011). Strategic use of new generation antidepressants for depression: SUN(^_^)D study protocol. Trials, 12, 116. doi:10.1186/1745-6215-12-116.CrossRefGoogle Scholar
Furukawa, T. A., Cipriani, A., Cowen, P. J., Leucht, S., Egger, M., & Salanti, G. (2019a). Optimal dose of selective serotonin reuptake inhibitors, venlafaxine, and mirtazapine in major depression: A systematic review and dose–response meta-analysis. The Lancet. Psychiatry, 6(7), 601609. doi:10.1016/s2215-0366(19)30217-2.CrossRefGoogle ScholarPubMed
Furukawa, T. A., Debray, T. P. A., Akechi, T., Yamada, M., Kato, T., Seo, M., & Efthimiou, O. (2020). Can personalized treatment prediction improve the outcomes, compared with the group average approach, in a randomized trial? Developing and validating a multivariable prediction model in a pragmatic megatrial of acute treatment for major depression. Journal of Affective Disorders, 274, 690697. doi:10.1016/j.jad.2020.05.141.CrossRefGoogle Scholar
Furukawa, T. A., Kato, T., Shinagawa, Y., Miki, K., Fujita, H., Tsujino, N., … Yamada, M. (2019b). Prediction of remission in pharmacotherapy of untreated major depression: Development and validation of multivariable prediction models. Psychological Medicine, 49(14), 24052413. doi:10.1017/s0033291718003331.CrossRefGoogle ScholarPubMed
Gruber, S., & van der Laan, M. J. (2009). Targeted Maximum Likelihood Estimation: a gentle introduction. UC Berkley Division of Biostatistics Working Paper Series, 252.Google Scholar
Gruber, S., & van der Laan, M. J. (2011). tmle: An R package for targeted maximum likelihood estimation. Journal of Statistical Software, 51(13), 135. doi:10.18637/jss.v051.i13.Google Scholar
Hernán, M. A., & Robins, J. M. (2016). Using big data to emulate a target trial when a randomized trial is not available. American Journal of Epidemiology, 183(8), 758764. doi:10.1093/aje/kwv254.CrossRefGoogle Scholar
Hubbard, A. E., Kherad-Pajouh, S., & van der Laan, M. J. (2016). Statistical inference for data adaptive target parameters. International Journal of Biostatistics, 12(1), 319. doi:10.1515/ijb-2015-0013.CrossRefGoogle ScholarPubMed
Institute of Social and Preventive Medicine Clinical Epidemiology & Biostatistics. (2009). Strobe Statement. Retrieved from https://www.strobe-statement.org/index.php?id=strobe-home.Google Scholar
Jha, M. K., Minhajuddin, A., Gadad, B. S., Greer, T. L., Mayes, T. L., & Trivedi, M. H. (2017). Interleukin 17 selectively predicts better outcomes with bupropion-SSRI combination: Novel T cell biomarker for antidepressant medication selection. Brain, Behavior and Immunity, 66, 103110. doi:10.1016/j.bbi.2017.07.005.CrossRefGoogle ScholarPubMed
Kato, T., Furukawa, T. A., Mantani, A., Kurata, K., Kubouchi, H., Hirota, S., … Guyatt, G. H. (2018). Optimising first- and second-line treatment strategies for untreated major depressive disorder – The SUND study: A pragmatic, multi-centre, assessor-blinded randomised controlled trial. BMC Medicine, 16(1), 103. doi:10.1186/s12916-018-1096-5.CrossRefGoogle ScholarPubMed
Keller, M. B. (2003). Past, present, and future directions for defining optimal treatment outcome in depression: Remission and beyond. JAMA, 289(23), 31523160. doi:10.1001/jama.289.23.3152.CrossRefGoogle ScholarPubMed
Kent, D. M., Paulus, J. K., van Klaveren, D., D'Agostino, R., Goodman, S., Hayward, R, … Steyerberg, E. W. (2020). The predictive approaches to treatment effect heterogeneity (PATH) statement. Research and Reporting Methods, 172(1), 3545. doi:10.7326/M18-3667.Google ScholarPubMed
Kessler, R. C. (2018). The potential of predictive analytics to provide clinical decision support in depression treatment planning. Current Opinion in Psychiatry, 31(1), 3239. doi:10.1097/yco.0000000000000377.CrossRefGoogle ScholarPubMed
Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ-9: Validity of a brief depression severity measure. Journal of General Internal Medicine, 16(9), 606613. doi:10.1046/j.1525-1497.2001.016009606.x.CrossRefGoogle ScholarPubMed
Kuhn, M., & Johnson, K. (2019). Feature engineering and selection: A practical approach for predictive models (1st ed.). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Kumar, E., Venkatasubramanian, S., Scheidegger, C., & Friedler, S. (2020). Problems with Shapley-value-based explanations as feature importance measures. arXiv:2002.11097. Retrieved from https://arxiv.org/abs/2002.11097.Google Scholar
LeDell, E., van der Laan, M. J., & Petersen, M. (2016). AUC-maximizing ensembles through metalearning. International Journal of Biostatistics, 12(1), 203218. doi:10.1515/ijb-2015-0035.CrossRefGoogle ScholarPubMed
Lim, S., & Jahng, S. (2019). Determining the number of factors using parallel analysis and its recent variants. Psychological Methods, 24(4), 452467. doi:10.1037/met0000230.CrossRefGoogle ScholarPubMed
Luedtke, A., Sadikova, E., & Kessler, R. C. (2019). Sample size requirements for multivariate models to predict between-patient differences in best treatments of major depressive disorder. Clinical Psychological Science, 7(3), 445461.CrossRefGoogle Scholar
Luedtke, A. R., & van der Laan, M. J. (2016a). Super-learning of an optimal dynamic treatment rule. International Journal of Biostatistics, 12(1), 305332. doi:10.1515/ijb-2015-0052.CrossRefGoogle ScholarPubMed
Luedtke, A. R., & van der Laan, M. J. (2016b). Optimal individualized treatments in resource-limited settings. International Journal of Biostatistics, 12(1), 283303. doi:10.1515/ijb-2015-0007.CrossRefGoogle ScholarPubMed
Luedtke, A. R., & van der Laan, M. J. (2017). Evaluating the impact of treating the optimal subgroup. Statistical Methods in Medical Research, 26(4), 16301640. doi:10.1177/0962280217708664.CrossRefGoogle ScholarPubMed
Lundberg, S., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. arXiv:1705.07874. Retrieved from https://arxiv.org/abs/1705.07874.Google Scholar
McGrath, C. L., Kelley, M. E., Holtzheimer, P. E., Dunlop, B. W., Craighead, W. E., Franco, A. R., … Mayberg, H. S. (2013). Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry, 70(8), 821829. doi:10.1001/jamapsychiatry.2013.143.CrossRefGoogle Scholar
Murphy, S. (2003). Optimal dynamic treatment regimes. Journal of the Royal Statistical Society Series B Statistical Methodology, 65(2), 331355. doi:10.1111/1467-9868.00389.CrossRefGoogle Scholar
Parikh, S. V., Quilty, L. C., Ravitz, P., Rosenbluth, M., Pavlova, B., Grigoriadis, S., … Uher, R. (2016). Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: Section 2. Psychological treatments. Canadian Journal of Psychiatry, 61(9), 524539. doi:10.1177/0706743716659418.CrossRefGoogle Scholar
Polley, E., LeDell, E., Kennedy, C., Lendle, S., & van der Laan, M. (2018). SuperLearner: Super Learner prediction version 2.0-2.4. Retrieved from https://cran.r-project.org/web/packages/SuperLearner/index.html.Google Scholar
R Core Team. (2019). R: a language and environment for statistical computing. Retrieved from https://www.R-project.org/.Google Scholar
Robins, J. (2004). Optimal structural nested models for optimal sequential decisions. In Lin, D. Y. & Heagerty, P. J. (Eds), Proceedings of the second Seattle symposium in biostatistics: Analysis of correlated data. (pp. 189326). New York, NY: Springer New York.CrossRefGoogle Scholar
Rush, A. J., Trivedi, M. H., Wisniewski, S. R., Nierenberg, A. A., Stewart, J. W., Warden, D., … Fava, M. (2006a). Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. American Journal of Psychiatry, 163(11), 19051917. doi:10.1176/ajp.2006.163.11.1905.CrossRefGoogle ScholarPubMed
Rush, A. J., Trivedi, M. H., Wisniewski, S. R., Stewart, J. W., Nierenberg, A. A., Thase, M. E., … Fava, M. (2006b). Bupropion-SR, sertraline, or venlafaxine-XR after failure of SSRIs for depression. New England Journal of Medicine, 354(12), 12311242. doi:10.1056/NEJMoa052963.CrossRefGoogle ScholarPubMed
SAS Institute Inc. (2014). SAS 9.4. Cary, NC: SAS Institute.Google Scholar
Schmitt, T. A., & Sass, D. A. (2011). Rotation criteria and hypothesis testing for exploratory factor analysis: Implications for factor pattern loadings and interfactor correlations. Educational and Psychological Measurement, 71, 95113. doi:10.1177/0013164410387348.CrossRefGoogle Scholar
Thornicroft, G., Chatterji, S., Evans-Lacko, S., Gruber, M., Sampson, N., Aguilar-Gaxiola, S., … Kessler, R. C. (2017). Undertreatment of people with major depressive disorder in 21 countries. British Journal of Psychiatry, 210(2), 119124. doi:10.1192/bjp.bp.116.188078.CrossRefGoogle ScholarPubMed
Van Bronswijk, S. C., Bruijniks, S. J. E., Lorenzo-Luaces, L., Derubeis, R. J., Lemmens, L. H. J. M., Peeters, F. P. M. L., … Huibers, M. J. H. (2020). Cross-trial prediction in psychotherapy: External validation of the personalized advantage Index using machine learning in two Dutch randomized trials comparing CBT versus IPT for depression. Psychotherapy Research, 31(1), 7891. doi:10.1080/10503307.2020.1823029.CrossRefGoogle ScholarPubMed
van Buuren, S. (2016). Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research, 16(3), 219242. doi:10.1177/0962280206074463.CrossRefGoogle Scholar
Van Calster, B., Wynants, L., Verbeek, J. F. M., Verbakel, J. Y., Christodoulou, E., Vickers, A. J., … Steyerberg, E. W. (2018). Reporting and interpreting decision curve analysis: A guide for investigators. European Urology, 74(6), 796804. doi:10.1016/j.eururo.2018.08.038.CrossRefGoogle ScholarPubMed
van der Laan, M. J., Polley, E. C., & Hubbard, A. E. (2007). Super learner. Statistical Applications in Genetics and Molecular Biology, 6(1), Article 25. doi:10.2202/1544-6115.1309.CrossRefGoogle ScholarPubMed
VanderWeele, T. J., Luedtke, A. R., van der Laan, M. J., & Kessler, R. C. (2019). Selecting optimal subgroups for treatment using many covariates. Epidemiology, 30(3), 334341. doi:10.1097/ede.0000000000000991.CrossRefGoogle ScholarPubMed
van Loo, H. M., de Jonge, P., Romeijn, J. W., Kessler, R. C., & Schoevers, R. A. (2012). Data-driven subtypes of major depressive disorder: A systematic review. BMC Medicine, 10, 156. doi:10.1186/1741-7015-10-156.CrossRefGoogle ScholarPubMed
Wells, J. E., Browne, M. O., Aguilar-Gaxiola, S., Al-Hamzawi, A., Alonso, J., Angermeyer, M. C., … Kessler, R. C. (2013). Drop out from out-patient mental healthcare in the world health organization's world mental health survey initiative. British Journal of Psychiatry, 202(1), 4249. doi:10.1192/bjp.bp.112.113134.CrossRefGoogle ScholarPubMed
Wright, M. N., & Ziegler, A. (2017). Ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77(1), 117.CrossRefGoogle Scholar
Supplementary material: File

Kessler et al. supplementary material

Kessler et al. supplementary material

Download Kessler et al. supplementary material(File)
File 182.9 KB