Skip to main content Accessibility help

Can psychological features predict antidepressant response to rTMS? A Discovery–Replication approach

  • Noralie Krepel (a1) (a2), A. John Rush (a3) (a4) (a5), Tabitha A. Iseger (a2) (a6), Alexander T. Sack (a1) and Martijn Arns (a2) (a6) (a7)...



Few studies focused on the relationship between psychological measures, major depressive disorder (MDD) and repetitive transcranial magnetic stimulation (rTMS) response. This study investigated several psychological measures as potential predictors for rTMS treatment response. Additionally, this study employed two approaches to evaluate the robustness of our findings by implementing immediate replication and full-sample exploration with strict p-thresholding.


This study is an open-label, multi-site study with a total of 196 MDD patients. The sample was subdivided in a Discovery (60% of total sample, n = 119) and Replication sample (40% of total sample, n = 77). Patients were treated with right low frequency (1 Hz) or left high frequency (10 Hz) rTMS at the dorsolateral prefrontal cortex. Clinical variables [Beck Depression Inventory (BDI), Neuroticism, Extraversion, Openness Five-Factor Inventory, and Depression, Anxiety, and Stress Scale, and BDI subscales] were obtained at baseline, post-treatment, and at follow-up. Predictors were analyzed in terms of statistical association, robustness (independent replication), as well as for their clinical relevance [positive predictive value (PPV) and negative predictive value (NPV)].


Univariate analyses revealed that non-responders had higher baseline anhedonia scores. Anhedonia scores at baseline correlated negatively with total BDI percentage change over time. This finding was replicated. However, anhedonia scores showed to be marginally predictive of rTMS response, and neither PPV nor NPV reached the levels of clinical relevance.


This study suggests that non-responders to rTMS treatment have higher baseline anhedonia scores. However, anhedonia was only marginally predictive of rTMS response. Since all other psychological measures did not show predictive value, it is concluded that psychological measures cannot be used as clinically relevant predictors to rTMS response in MDD.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Can psychological features predict antidepressant response to rTMS? A Discovery–Replication approach
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Can psychological features predict antidepressant response to rTMS? A Discovery–Replication approach
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Can psychological features predict antidepressant response to rTMS? A Discovery–Replication approach
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Martijn Arns, E-mail:


Hide All

Shared last author.



Hide All
Arns, M, Bruder, G, Hegerl, U, Spooner, C, Palmer, DM, Etkin, A, Fallahpour, K, Gatt, JM, Hirshberg, L and Gordon, E (2016) EEG alpha asymmetry as a gender-specific predictor of outcome to acute treatment with different antidepressant medications in the randomized iSPOT-D study. Clinical Neurophysiology 127, 509519.
Bagby, RM, Quilty, LC, Segal, ZV, McBride, CC, Kennedy, SH and Costa, PT (2008) Personality and differential treatment response in major depression: a randomized controlled trial comparing cognitive-behavioural therapy and pharmacotherapy. Canadian Journal of Psychiatry 53, 361370.
Benjamin, DJ, Berger, JO, Johannesson, M, Nosek, BA, Wagenmakers, E-J, Berk, R, Bollen, KA, Brembs, B, Brown, L, Camerer, C, Cesarini, D, Chambers, CD, Clyde, M, Cook, TD, De Boeck, P, Dienes, Z, Dreber, A, Easwaran, K, Efferson, C, Fehr, E, Fidler, F, Field, AP, Forster, M, George, EI, Gonzalez, R, Goodman, S, Green, E, Green, DP, Greenwald, A, Hadfield, JD, Hedges, LV, Held, L, Hua Ho, T, Hoijtink, H, Hruschka, DJ, Imai, K, Imbens, G, Ioannidis, JPA, Jeon, M, Jones, JH, Kirchler, M, Laibson, D, List, J, Little, R, Lupia, A, Machery, E, Maxwell, SE, McCarthy, M, Moore, D, Morgan, SL, Munafó, M, Nakagawa, S, Nyhan, B, Parker, TH, Pericchi, L, Perugini, M, Rouder, J, Rousseau, J, Savalei, V, Schönbrodt, FD, Sellke, T, Sinclair, B, Tingley, D, Van Zandt, T, Vazire, S, Watts, DJ, Winship, C, Wolpert, RL, Xie, Y, Young, C, Zinman, J and Johson, VE (2018) Redefine statistical significance. Nature Human Behaviour 2, 610.
Berlim, MT, McGirr, A, Beaulieu, M-M, Van den Eynde, F and Turecki, G (2013) Are neuroticism and extraversion associated with the antidepressant effects of repetitive transcranial magnetic stimulation (rTMS)? An exploratory 4-week trial. Neuroscience Letters 534, 306310.
Berlim, MT, van den Eynde, F, Tovar-Perdomo, S and Daskalakis, ZJ (2014) Response, remission and drop-out rates following high-frequency repetitive transcranial magnetic stimulation (rTMS) for treating major depression: a systematic review and meta-analysis of randomized, double-blind and sham-controlled trials. Psychological Medicine 44, 225239.
Brakemeier, E-L, Luborzewski, A, Danker-Hopfe, H, Kathmann, N and Bajbouj, M (2007) Positive predictors for antidepressive response to prefrontal repetitive transcranial magnetic stimulation (rTMS). Journal of Psychiatric Research 41, 395403.
Carpenter, LL, Janicak, PG, Aaronson, ST, Boyadjis, T, Brock, DG, Cook, IA, Dunner, DL, Lanocha, K, Solvason, HB and Demitrack, MA (2012) Transcranial magnetic stimulation (TMS) for major depression: a multisite, naturalistic, observational study of acute treatment outcomes in clinical practice. Depression and Anxiety 29, 587596.
Costa, PT and McCrae, RR (1992) Revised NEO Personality Inventory and NEO Five-Factor Inventory: Professional Manual. Psychological Assessment Resources, Inc., Lutz, FL.
Croughan, JL, Secunda, SK, Katz, MM, Robins, E, Mendels, J, Swann, A and Harris-Larkin, B (1988) Sociodemographic and prior clinical course characteristics associated with treatment response in depressed patients. Journal of Psychiatric Research 22, 227237.
Deng, Y, McQuoid, DR, Potter, GG, Steffens, DC, Albert, K, Riddle, M, Beyer, JL and Taylor, WD (2018) Predictors of recurrence in remitted late-life depression. Depression and Anxiety 35, 658667.
Donse, L, Padberg, F, Sack, AT, Rush, AJ and Arns, M (2018) Simultaneous rTMS and psychotherapy in major depressive disorder: clinical outcomes and predictors from a large naturalistic study. Brain Stimulation 11, 337345.
Downar, J, Geraci, J, Salomons, TV, Dunlop, K, Wheeler, S, McAndrews, MP, Bakker, N, Blumberger, DM, Daskalakis, ZJ, Kennedy, SH, Flint, AJ and Giacobbe, P (2014) Anhedonia and reward-circuit connectivity distinguish nonresponders from responders to dorsomedial prefrontal repetitive transcranial magnetic stimulation in major depression. Biological Psychiatry 76, 176185.
Fava, M, Alpert, JE, Carmin, CN, Wisniewski, SR, Trivedi, MH, Biggs, MM, Shores Wilson, K, Morgan, D, Schwartz, T, Balasubramani, GK and Rush, AJ (2004) Clinical correlates and symptom patterns of anxious depression among patients with major depressive disorder in STAR*D. Psychological Medicine 34, 12991308.
Fava, M, Rush, AJ, Alpert, JE, Balasubramani, GK, Wisniewski, SR, Carmin, CN, Biggs, MM, Zisook, S, Leuchter, A, Howland, R, Warden, D and Trivedi, MH (2008) Difference in treatment outcome in outpatients with anxious versus nonanxious depression: a STAR*D report. The American Journal of Psychiatry 165, 342351.
Fitzgerald, PB, Brown, TL, Marston, NAU, Daskalakis, ZJ, de Castella, A and Kulkarni, J (2003) Transcranial magnetic stimulation in the treatment of depression: a double-blind, placebo-controlled trial. Archives of General Psychiatry 60, 1002.
Fitzgerald, PB, Hoy, K, Daskalakis, ZJ and Kulkarni, J (2009) A randomized trial of the anti depressant effects of low- and high-frequency transcranial magnetic stimulation in treatment-resistant depression. Depression and Anxiety 26, 229234.
Fitzgerald, PB, Hoy, KE, Anderson, RJ and Daskalakis, ZJ (2016) A study of the pattern of response to rTMS treatment in depression. Depression and Anxiety 33, 746753.
Fournier, JC, DeRubeis, RJ, Hollon, SD, Dimidjian, S, Amsterdam, JD, Shelton, RC and Fawcett, J (2010) Antidepressant drug effects and depression severity: a patient-level meta analysis. JAMA 303, 4753.
Gaynes, BN, Lloyd, SW, Lux, L, Gartlehner, G, Hansen, RA, Brode, S, Jonas, DE, Swinson Evans, T, Viswanathan, M and Lohr, KN (2014) Repetitive transcranial magnetic stimulation for treatment-resistant depression: a systematic review and meta-analysis. The Journal of Clinical Psychiatry 75, 477489.
Goldberg, LR (1990) An alternative ‘description of personality’: the big-five factor structure. Journal of Personality and Social Psychology 59, 12161229.
Griffith, JW, Zinbarg, RE, Craske, MG, Mineka, S, Rose, RD, Waters, AM and Sutton, JM (2010) Neuroticism as a common dimension in the internalizing disorders. Psychological Medicine 40, 11251136.
Hammen, C (2005) Stress and depression. Annual Review of Clinical Psychology 1, 293319.
Hayward, RD, Taylor, WD, Smoski, MJ, Steffens, DC and Payne, ME (2013) Association of five-factor model personality domains and facets with presence, onset, and treatment outcomes of major depression in older adults. The American Journal of Geriatric Psychiatry 21, 8896.
Henry, JD and Crawford, JR (2005) The short-form version of the depression anxiety stress scales (DASS-21): construct validity and normative data in a large non-clinical sample. British Journal Clinical Psychology 44, 227239.
Ionescu, DF, Luckenbaugh, DA, Niciu, MJ, Richards, EM, Slonena, EE, Vande Voort, JL, Brutsche, NE and Zarate, CA (2014) Effect of baseline anxious depression on initial And sustained antidepressant response to ketamine. Journal of Clinical Psychiatry 75, e932e938.
Iseger, TA, Korgaonkar, MS, Kenemans, JL, Grieve, SM, Baeken, C, Fitzgerald, PB and Arns, M (2017) EEG connectivity between the subgenual anterior cingulate and prefrontal cortices in response to antidepressant medication. European Neuropsychopharmacology 27, 301312.
Joffe, RT, Bagby, RM and Levitt, A (1993) Anxious and nonanxious depression. The American Journal of Psychiatry 150, 12571258.
Jylhä, P and Isometsä, E (2006) The relationship of neuroticism and extraversion to symptoms of anxiety and depression in the general population. Depression and Anxiety 23, 281289.
Khan, A, Leventhal, RM, Khan, SR and Brown, WA (2002) Severity of depression and response to antidepressants and placebo: an analysis of the food and drug administration database. Journal of Clinical Psychopharmacology 22, 4045.
Kotov, R, Gamez, W, Schmidt, F and Watson, D (2010) Linking ‘big’ personality traits to anxiety, depressive, and substance use disorders: a meta-analysis. Psychological Bulletin 136, 768821.
Krepel, N, Sack, AT, Kenemans, JL, Fitzgerald, PB, Drinkenburg, WH and Arns, M (2018) Non-replication of neurophysiological predictors of non-response to rTMS in depression and neurophysiological data-sharing proposal. Brain Stimulation 11, 639641.
Kuk, AYC, Li, J and Rush, AJ (2010) Recursive subsetting to identify patients in the STAR*D: a method to enhance the accuracy of early prediction of treatment outcome and to inform personalized care. The Journal of Clinical Psychiatry 71, 15021508.
Kumar, G, Steer, RA, Teitelman, KB and Villacis, L (2002) Effectiveness of Beck Depression Inventory-II subscales in screening for major depressive disorders in adolescent psychiatric inpatients. Assessment 9, 164170.
Leon, AC and Heo, M (2009) Sample sizes required to detect interactions between two binary fixed-effects in a mixed-effects linear regression model. Computational Statistics & Data Analysis 53, 603608.
Leventhal, AM, Chasson, GS, Tapia, E, Miller, EK and Pettit, JW (2006) Measuring hedonic capacity in depression: a psychometric analysis of three anhedonia scales. Journal of Clinical Psychology 62, 15451558.
Li, J, Kuk, AYC and Rush, AJ (2012) A practical approach to the early identification of antidepressant medication non-responders. Psychological Medicine 42, 309316.
Maxwell, SE, Lau, MY and Howard, GS (2015) Is psychology suffering from a replication crisis? What does ‘failure to replicate’ really mean? The American Psychologist 70, 487498.
McGirr, A, Van den Eynde, F, Chachamovich, E, Fleck, MPA and Berlim, MT (2014) Personality dimensions and deep repetitive transcranial magnetic stimulation (DTMS) for treatment-resistant depression: a pilot trial on five-factor prediction of antidepressant response. Neuroscience Letters 563, 144148.
McGonagle, KA and Kessler, RC (1990) Chronic stress, acute stress, and depressive symptoms. American Journal of Community Psychology 18, 681706.
McMakin, DL, Olino, TM, Porta, G, Dietz, LJ, Emslie, G, Clarke, G, Wagner, KD, Asarnow, JR, Ryan, ND, Birmaher, B, Shamseddeen, W, Mayes, T, Kennard, B, Spirito, A, Keller, M, Lynch, FL, Dickerson, JF and Brent, DA (2012) Anhedonia predicts poorer recovery among youth with selective serotonin reuptake inhibitor treatment resistant depression. Journal of the American Academy of Child and Adolescent Psychiatry 51, 404411.
Mulder, RT (2002) Personality pathology and treatment outcome in major depression: a review. The American Journal of Psychiatry 159, 359371.
Open Science Collaboration (2012) An open, large-scale, collaborative effort to estimate the reproducibility of psychological science. Perspectives on Psychological Science 7, 657660.
Pashler, H and Wagenmakers, E-J (2012) Editors’ introduction to the special section on replicability in psychological science: a crisis of confidence? Perspectives on Psychological Science 7, 528530.
Patil, P, Peng, RD and Leek, JT (2016) What should researchers expect when they replicate studies? A statistical view of replicability in psychological science. Perspectives on Psychological Science 11, 539544.
Pizzagalli, DA (2014) Depression, stress, and anhedonia: toward a synthesis and integrated model. Annual Review of Clinical Psychology 10, 393423.
Roediger, HL III (2012) Psychology's Woes and a Partial Cure: The Value of Replication. Association for Psychological Science. Available at
Quilty, LC, De Fruyt, F, Rolland, J-P, Kennedy, SH, Rouillon, PF and Bagby, RM (2008) Dimensional personality traits and treatment outcome in patients with major depressive disorder. Journal of Affective Disorders 108, 241250.
Rosellini, AJ and Brown, TA (2011) The NEO five-factor inventory: latent structure and relationships with dimensions of anxiety and depressive disorders in a large clinical sample. Assessment 18, 2738.
Rostami, R, Kazemi, R, Nitsche, MA, Gholipour, F and Salehinejad, MA (2017) Clinical and demographic predictors of response to rTMS treatment in unipolar and bipolar depressive disorders. Clinical Neurophysiology 128, 19611970.
Schutter, DJLG (2009) Antidepressant efficacy of high-frequency transcranial magnetic stimulation over the left dorsolateral prefrontal cortex in double-blind sham-controlled designs: a meta-analysis. Psychological Medicine 39, 6575.
Schutter, DJLG (2010) Quantitative review of the efficacy of slow-frequency magnetic brain stimulation in major depressive disorder. Psychological Medicine 40, 17891795.
Simons, DJ (2014) The value of direct replication. Perspectives on Psychological Science 9, 7680.
Spijker, J, Bijl, RV, de Graaf, R and Nolen, WA (2001) Determinants of poor 1-year outcome of DSM-III-R major depression in the general population: results of the Netherlands Mental Health Survey and Incidence Study (NEMESIS). Acta Psychiatrica Scandinavica 103, 122130.
Treadway, MT and Zald, DH (2011) Reconsidering anhedonia in depression: lessons from translational neuroscience. Neuroscience and Biobehavioral Reviews 35, 537555.
Trentini, CM, de Xavier, FMF, Chachamovich, E, Rocha, NSD, Hirakata, VN and de Fleck, MPA (2005) The influence of somatic symptoms on the performance of elders in the Beck Depression Inventory (BDI). Revista Brasileira de Psiquiatria (Sao Paulo, Brazil: 1999) 27, 119123.
Trivedi, MH, Rush, AJ, Wisniewski, SR, Nierenberg, AA, Warden, D, Ritz, L, Norquist, G, Howland, RH, Lebowitz, B, McGrath, PJ, Shores-Wilson, K, Biggs, MM, Balasubramani, GK, Fava, M and STAR*D Study Team (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. The American Journal of Psychiatry 163, 2840.
Uher, R, Dernovsek, MZ, Mors, O, Hauser, J, Souery, D, Zobel, A, Maier, W, Henigsberg, N, Kalember, P, Rietschel, M, Placentino, A, Mendlewicz, J, Aitchison, KJ, McGuffin, P and Farmer, A (2011) Melancholic, atypical and anxious depression subtypes and outcome of treatment with escitalopram and nortriptyline. Journal of Affective Disorders 132, 112120.
van Dinteren, R, Arns, M, Kenemans, L, Jongsma, ML, Kessels, RP, Fitzgerald, P, Fallahpour, K, Debattista, C, Gordon, E and Williams, LM (2015) Utility of event-related potentials in predicting antidepressant treatment response: an iSPOT-D report. European Neuropsychopharmacology 25, 19811990.
Vinckier, F, Gourion, D and Mouchabac, S (2017) Anhedonia predicts poor psychosocial functioning: results from a large cohort of patients treated for major depressive disorder by general practitioners. European Psychiatry 44, 18.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Krepel et al. supplementary material
Krepel et al. supplementary material 1

 Word (1.9 MB)
1.9 MB

Can psychological features predict antidepressant response to rTMS? A Discovery–Replication approach

  • Noralie Krepel (a1) (a2), A. John Rush (a3) (a4) (a5), Tabitha A. Iseger (a2) (a6), Alexander T. Sack (a1) and Martijn Arns (a2) (a6) (a7)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.