Skip to main content Accessibility help

Failure to deactivate in the prefrontal cortex in schizophrenia: dysfunction of the default mode network?

  • E. Pomarol-Clotet (a1) (a2), R. Salvador (a1) (a2) (a3), S. Sarró (a1) (a2) (a4), J. Gomar (a1) (a2), F. Vila (a3), Á. Martínez (a3), A. Guerrero (a1), J. Ortiz-Gil (a1), B. Sans-Sansa (a1), A. Capdevila (a3), J. M. Cebamanos (a1) and P. J. McKenna (a1) (a2) (a5)...



Functional imaging studies using working memory tasks have documented both prefrontal cortex (PFC) hypo- and hyperactivation in schizophrenia. However, these studies have often failed to consider the potential role of task-related deactivation.


Thirty-two patients with chronic schizophrenia and 32 age- and sex-matched normal controls underwent functional magnetic resonance imaging (fMRI) scanning while performing baseline, 1-back and 2-back versions of the n-back task. Linear models were used to obtain maps of activations and deactivations in the groups.


The controls showed activation in the expected frontal regions. There were also clusters of deactivation, particularly in the anterior cingulate/ventromedial PFC and the posterior cingulate cortex/precuneus. Compared to the controls, the schizophrenic patients showed reduced activation in the right dorsolateral prefrontal cortex (DLPFC) and other frontal areas. There was also an area in the anterior cingulate/ventromedial PFC where the patients showed apparently greater activation than the controls. This represented a failure of deactivation in the schizophrenic patients. Failure to activate was a function of the patients' impaired performance on the n-back task, whereas the failure to deactivate was less performance dependent.


Patients with schizophrenia show both failure to activate and failure to deactivate during performance of a working memory task. The area of failure of deactivation is in the anterior prefrontal/anterior cingulate cortex and corresponds to one of the two midline components of the ‘default mode network’ implicated in functions related to maintaining one's sense of self.


Corresponding author

*Address for correspondence: E. Pomarol-Clotet, M.D., Ph.D., Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain. (Email:


Hide All
Artiges, E, Martinot, JL, Verdys, M, Attar-Levy, D, Mazoyer, B, Tzourio, N, Giraud, MJ, Paillere-Martinot, ML (2000). Altered hemispheric functional dominance during word generation in negative schizophrenia. Schizophrenia Bulletin 26, 709721.
Beckmann, CF, Jenkinson, M, Woolrich, MW, Behrens, TE, Flitney, DE, Devlin, JT, Smith, SM (2006). Applying FSL to the FIAC data: model-based and model-free analysis of voice and sentence repetition priming. Human Brain Mapping 27, 380391.
Bluhm, RL, Miller, J, Lanius, RA, Osuch, EA, Boksman, K, Neufeld, R, Theberge, J, Schaefer, B, Williamson, P (2007). Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophrenia Bulletin 33, 10041012.
Calhoun, VD, Maciejewski, PK, Pearlson, GD, Kiehl, KA (2007). Temporal lobe and ‘default’ hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Human Brain Mapping. Published online: 25 September 2007. doi:10.1002/hbm.20463.
Callicott, JH, Bertolino, A, Mattay, VS, Langheim, FJ, Duyn, J, Coppola, R, Goldberg, TE, Weinberger, DR (2000). Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cerebral Cortex 10, 10781092.
Callicott, JH, Mattay, VS, Verchinski, BA, Marenco, S, Egan, MF, Weinberger, DR (2003). Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. American Journal of Psychiatry 160, 22092215.
Chua, SE, McKenna, PJ (1995). Schizophrenia – a brain disease? A critical review of structural and functional cerebral abnormality in the disorder. British Journal of Psychiatry 166, 563582.
Del Ser, T, Gonzalez-Montalvo, JI, Martinez-Espinosa, S, Delgado-Villapalos, C, Bermejo, F (1997). Estimation of premorbid intelligence in Spanish people with the Word Accentuation Test and its application to the diagnosis of dementia. Brain and Cognition 33, 343356.
Fletcher, PC, McKenna, PJ, Frith, CD, Grasby, PM, Friston, KJ, Dolan, RJ (1998). Brain activations in schizophrenia during a graded memory task studied with functional neuroimaging. Archives of General Psychiatry 55, 10011008.
Frith, CD, Friston, KJ, Herold, S, Silbersweig, D, Fletcher, P, Cahill, C, Dolan, RJ, Frackowiak, RS, Liddle, PF (1995). Regional brain activity in chronic schizophrenic patients during the performance of a verbal fluency task. British Journal of Psychiatry 167, 343349.
Garrity, AG, Pearlson, GD, McKiernan, K, Lloyd, D, Kiehl, KA, Calhoun, VD (2007). Aberrant ‘default mode’ functional connectivity in schizophrenia. American Journal of Psychiatry 164, 450457.
Gevins, A, Cutillo, B (1993). Spatiotemporal dynamics of component processes in human working memory. Electroencephalography and Clinical Neurophysiology 87, 128143.
Glahn, DC, Ragland, JD, Abramoff, A, Barrett, J, Laird, AR, Bearden, CE, Velligan, DI (2005). Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Human Brain Mapping 25, 6069.
Green, DM, Swets, JA (1966). Signal Detection Theory and Psychophysics. Krieger: New York.
Greicius, MD, Krasnow, B, Reiss, AL, Menon, V (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences USA 100, 253258.
Gusnard, DA (2005). Being a self: considerations from functional imaging. Consciousness and Cognition 14, 679697.
Gusnard, DA, Raichle, ME, Raichle, ME (2001). Searching for a baseline: functional imaging and the resting human brain. Nature Reviews Neuroscience 2, 685694.
Harrison, BJ, Yucel, M, Pujol, J, Pantelis, C (2007). Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophrenia Research 91, 8286.
Hill, K, Mann, L, Laws, KR, Stephenson, CM, Nimmo-Smith, I, McKenna, PJ (2004). Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. Acta Psychiatrica Scandinavica 110, 243256.
Hugdahl, K, Rund, BR, Lund, A, Asbjornsen, A, Egeland, J, Ersland, L, Landro, NI, Roness, A, Stordal, KI, Sundet, K, Thomsen, T (2004). Brain activation measured with fMRI during a mental arithmetic task in schizophrenia and major depression. American Journal of Psychiatry 161, 286293.
Ingvar, DH, Franzen, G (1974). Abnormalities of cerebral blood flow distribution in patients with chronic schizophrenia. Acta Psychiatrica Scandinavica 50, 425462.
Kennedy, DP, Redcay, E, Courchesne, E (2006). Failing to deactivate: resting functional abnormalities in autism. Proceedings of the National Academy of Sciences USA 103, 82758280.
Manoach, DS (2003). Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophrenia Research 60, 285298.
Manoach, DS, Press, DZ, Thangaraj, V, Searl, MM, Goff, DC, Halpern, E, Saper, CB, Warach, S (1999). Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biological Psychiatry 45, 11281137.
Menzies, L, Ooi, C, Kamath, S, Suckling, J, McKenna, P, Fletcher, P, Bullmore, E, Stephenson, C (2007). Effects of gamma-aminobutyric acid-modulating drugs on working memory and brain function in patients with schizophrenia. Archives of General Psychiatry 64, 156167.
Meyer-Lindenberg, AS, Olsen, RK, Kohn, PD, Brown, T, Egan, MF, Weinberger, DR, Berman, KF (2005). Regionally specific disturbance of dorsolateral prefrontal–hippocampal functional connectivity in schizophrenia. Archives of General Psychiatry 62, 379386.
Raichle, ME, MacLeod, AM, Snyder, AZ, Powers, WJ, Gusnard, DA, Shulman, GL (2001). A default mode of brain function. Proceedings of the National Academy of Sciences USA 98, 676682.
Schneider, F, Habel, U, Reske, M, Kellermann, T, Stocker, T, Shah, NJ, Zilles, K, Braus, DF, Schmitt, A, Schlosser, R, Wagner, M, Frommann, I, Kircher, T, Rapp, A, Meisenzahl, E, Ufer, S, Ruhrmann, S, Thienel, R, Sauer, H, Henn, FA, Gaebel, W (2007). Neural correlates of working memory dysfunction in first-episode schizophrenia patients: an fMRI multi-center study. Schizophrenia Research 89, 198210.
Smith, SM, Jenkinson, M, Woolrich, MW, Beckmann, CF, Behrens, TE, Johansen-Berg, H, Bannister, PR, De Luca, M, Drobnjak, I, Flitney, DE, Niazy, RK, Saunders, J, Vickers, J, Zhang, Y, De Stefano, N, Brady, JM, Matthews, PM (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23 (Suppl. 1), S208S219.
Sonuga-Barke, EJ, Castellanos, FX (2007). Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neuroscience and Biobehavioral Reviews 31, 977986.
Spence, SA, Liddle, PF, Stefan, MD, Hellewell, JS, Sharma, T, Friston, KJ, Hirsch, SR, Frith, CD, Murray, RM, Deakin, JF, Grasby, PM (2000). Functional anatomy of verbal fluency in people with schizophrenia and those at genetic risk. Focal dysfunction and distributed disconnectivity reappraised. British Journal of Psychiatry 176, 5260.
Tan, HY, Sust, S, Buckholtz, JW, Mattay, VS, Meyer-Lindenberg, A, Egan, MF, Weinberger, DR, Callicott, JH (2006). Dysfunctional prefrontal regional specialization and compensation in schizophrenia. American Journal of Psychiatry 163, 19691977.
Thermenos, HW, Goldstein, JM, Buka, SL, Poldrack, RA, Koch, JK, Tsuang, MT, Seidman, LJ (2005). The effect of working memory performance on functional MRI in schizophrenia. Schizophrenia Research 74, 179194.
Walter, H, Vasic, N, Hose, A, Spitzer, M, Wolf, RC (2007). Working memory dysfunction in schizophrenia compared to healthy controls and patients with depression: evidence from event-related fMRI. NeuroImage 35, 15511561.
Wechsler, D (1999). Escala de Inteligencia de Wechsler para Adultos (WAIS-III). TEA Ediciones: Madrid.
Weinberger, DR, Berman, KF, Zec, RF (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Archives of General Psychiatry 43, 114124.
Weinberger, DR, Egan, MF, Bertolino, A, Callicott, JH, Mattay, VS, Lipska, BK, Berman, KF, Goldberg, TE (2001). Prefrontal neurons and the genetics of schizophrenia. Biological Psychiatry 50, 825844.
Williamson, P (2007). Are anticorrelated networks in the brain relevant to schizophrenia? Schizophrenia Bulletin 33, 9941003.
Zhou, Y, Liang, M, Tian, L, Wang, K, Hao, Y, Liu, H, Liu, Z, Jiang, T (2007). Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophrenia Research 97, 194205.


Failure to deactivate in the prefrontal cortex in schizophrenia: dysfunction of the default mode network?

  • E. Pomarol-Clotet (a1) (a2), R. Salvador (a1) (a2) (a3), S. Sarró (a1) (a2) (a4), J. Gomar (a1) (a2), F. Vila (a3), Á. Martínez (a3), A. Guerrero (a1), J. Ortiz-Gil (a1), B. Sans-Sansa (a1), A. Capdevila (a3), J. M. Cebamanos (a1) and P. J. McKenna (a1) (a2) (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed