Skip to main content Accessibility help

Intensive practice of a cognitive task is associated with enhanced functional integration in schizophrenia

  • R. Schlösser (a1), K. Koch (a1), G. Wagner (a1), C. Schultz (a1), M. Röbel (a1), C. Schachtzabel (a1), J. R. Reichenbach (a2) and H. Sauer (a1)...



There is increasing evidence that the frequently reported working memory impairments in schizophrenia might be partly due to an alteration in the functional connectivity between task-relevant areas. However, little is known about the functional connectivity patterns in schizophrenia patients during learning processes. In a previous study, Koch et al. [Neuroscience (2007) 146, 1474–1483] have demonstrated stronger exponential activation decreases in schizophrenia patients during overlearning of short-term memory material. The question arises whether these differential temporal patterns of activation in schizophrenia patients and controls are going along with changes in task-related functional connectivity.


Therefore, in the current study, 13 patients with schizophrenia and 13 controls were studied while performing a short-term memory task associated with increasing overlearning of verbal stimulus material. Functional connectivity was investigated by analyses of psychophysiological interactions (PPI).


Results revealed significant task-related modulation of functional connectivity between the left dorsolateral prefrontal cortex (DLPFC) and a network including the right DLPFC, left ventrolateral prefrontal cortex, premotor cortex, right inferior parietal cortex, left and right cerebellum as well as the left occipital lobe in patients during the course of overlearning and practice. No significant PPI results were detectable in controls.


Activation changes with practice were associated with high functional connectivity between task-relevant areas in schizophrenia patients. This could be interpreted as a compensatory resource allocation and network integration in the context of cortical inefficiency and may be a specific neurophysiological signature underlying the pathophysiology of schizophrenia.


Corresponding author

*Address for correspondence: R. Schlösser, M.D., Department of Psychiatry and Psychotherapy, University of Jena, Philosophenweg 3, 07740 Jena, Germany. (Email:


Hide All
Altamura, M, Elvevag, B, Blasi, G, Bertolino, A, Callicott, JH, Weinberger, DR, Mattay, VS, Goldberg, TE (2007). Dissociating the effects of Sternberg working memory demands in prefrontal cortex. Psychiatry Research 154, 103114.
Andreasen, NC, Nopoulos, P, O'Leary, DS, Miller, DD, Wassink, T, Flaum, M (1999). Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biological Psychiatry 46, 908920.
Barch, DM, Carter, CS, Braver, TS, Sabb, FW, MacDonald, A 3rd, Noll, DC, Cohen, JD (2001). Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Archives of General Psychiatry 58, 280288.
Boksman, K, Theberge, J, Williamson, P, Drost, DJ, Malla, A, Densmore, M, Takhar, J, Pavlosky, W, Menon, RS, Neufeld, RWJ (2005). A 4.0-T fMRI study of brain connectivity during word fluency in first-episode schizophrenia. Schizophrenia Research 75, 247263.
Brett, M, Johnsrude, IS, Owen, AM (2002). The problem of functional localization in the human brain. Nature Reviews 3, 243249.
Büchel, C, Coull, J, Friston, K (1999). The predictive value of changes in effective connectivity for human learning. Science 283, 15381541.
Büchel, C, Friston, KJ (1997). Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cerebral Cortex 7, 768778.
Callicott, JH, Bertolino, A, Mattay, VS, Langheim, FJ, Duyn, J, Coppola, R, Goldberg, TE, Weinberger, DR (2000). Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cerebral Cortex 10, 10781092.
D'Esposito, M, Postle, BR, Ballard, D, Lease, J (1999). Maintenance versus manipulation of information held in working memory: an event-related fMRI study. Brain and Cognition 41, 6686.
Egner, T, Hirsch, J (2005). The neural correlates and functional integration of cognitive control in a Stroop task. Neuroimage 24, 539547.
Federspiel, A, Begre, S, Kiefer, C, Schroth, G, Strik, WK, Dierks, T (2006). Alterations of white matter connectivity in first episode schizophrenia. Neurobiological Disorders 22, 702709.
Fletcher, P, McKenna, PJ, Friston, KJ, Frith, CD, Dolan, RJ (1999). Abnormal cingulate modulation of fronto-temporal connectivity in schizophrenia. Neuroimage 9, 337342.
Friston, KJ, Buechel, C, Fink, GR, Morris, J, Rolls, E, Dolan, RJ (1997). Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6, 218229.
Friston, KJ, Frith, CD (1995). Schizophrenia: a disconnection syndrome? Clinical Neuroscience 3, 8997.
Honey, G, Fu, C, Kim, J, Brammer, M, Croudace, T, Suckling, J, Pich, E, Williams, S, Bullmore, E (2002). Effects of verbal working memory load on corticocortical connectivity modeled by path analysis of functional magnetic resonance imaging data. Neuroimage 17, 573582.
Ito, M (1984). The Cerebellum and Neural Control. Raven: New York.
Jennings, JM, McIntosh, AR, Kapur, S, Zipursky, RB, Houle, S (1998). Functional network differences in schizophrenia: a rCBF study of semantic processing. Neuroreport 9, 16971700.
Kanaan, RA, Kim, JS, Kaufmann, WE, Pearlson, GD, Barker, GJ, McGuire, PK (2005). Diffusion tensor imaging in schizophrenia. Biological Psychiatry 58, 921929.
Kay, SR, Fiszbein, A, Opler, LA (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin 13, 261276.
Kim, J-J, Ho Seok, J, Park, H-J, Soo Lee, D, Chul Lee, M, Soo Kwon, J (2005). Functional disconnection of the semantic networks in schizophrenia. Neuroreport 16, 355359.
Koch, K, Schachtzabel, C, Wagner, G, Reichenbach, JR, Sauer, H, Schlösser, R (2008 a). The neural correlates of reward-related trial-and-error learning: an fMRI study with a probabilistic learning task. Learning and Memory 15, 728732.
Koch, K, Wagner, G, Nenadic, I, Schachtzabel, C, Roebel, M, Schultz, C, Axer, M, Reichenbach, JR, Sauer, H, Schlösser, RG (2007). Temporal modeling demonstrates preserved overlearning processes in schizophrenia: an fMRI study. Neuroscience 146, 14741483.
Koch, K, Wagner, G, Nenadic, I, Schachtzabel, C, Schultz, C, Roebel, M, Reichenbach, JR, Sauer, H, Schlösser, RG (2008 b). Fronto-striatal hypoactivation during correct information retrieval in patients with schizophrenia: an fMRI study. Neuroscience 153, 5462.
Koch, K, Wagner, G, von Consbruch, K, Nenadic, I, Schultz, C, Ehle, C, Reichenbach, J, Sauer, H, Schlösser, R (2006). Temporal changes in neural activation during practice of information retrieval from short-term memory: an fMRI study. Brain Research 1107, 140150.
Lancaster, JL, Woldorff, MG, Parsons, LM, Liotti, M, Freitas, CS, Rainey, L, Kochunov, PV, Nickerson, D, Mikiten, SA, Fox, PT (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping 10, 120131.
Lawrie, SM, Buechel, C, Whalley, HC, Frith, CD, Friston, KJ, Johnstone, EC (2002). Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biological Psychiatry 51, 10081011.
Manoach, DS, Gollub, RL, Benson, ES, Searl, MM, Goff, DC, Halpern, E, Saper, CB, Rauch, SL (2000). Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biological Psychiatry 48, 99–109.
Mechelli, A, Allen, P, Amaro, E Jr., Fu, CH, Williams, SC, Brammer, MJ, Johns, LC, McGuire, PK (2007). Misattribution of speech and impaired connectivity in patients with auditory verbal hallucinations. Human Brain Mapping 28, 12131222.
Mendrek, A, Kiehl, KA, Smith, AM, Irwin, D, Forster, BB, Liddle, PF (2005). Dysfunction of a distributed neural circuitry in schizophrenia patients during a working-memory performance. Psychological Medicine 35, 187196.
Meyer-Lindenberg, A, Poline, JB, Kohn, PD, Holt, JL, Egan, MF, Weinberger, DR, Berman, KF (2001). Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. American Journal of Psychiatry 158, 18091817.
Meyer-Lindenberg, AS, Olsen, RK, Kohn, PD, Brown, T, Egan, MF, Weinberger, DR, Berman, KF (2005). Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Archives of General Psychiatry 62, 379386.
Perlstein, WM, Carter, CS, Noll, DC, Cohen, JD (2001). Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. American Journal of Psychiatry 158, 11051113.
Postle, BR, Berger, JS, D'Esposito, M (1999). Functional neuroanatomical double dissociation of mnemonic and executive control processes contributing to working memory performance. Proceedings of the National Academy of Sciences USA 96, 1295912964.
Potkin, SG, Turner, JA, Brown, GG, McCarthy, G, Greve, DN, Glover, GH, Manoach, DS, Belger, A, Diaz, M, Wible, CG, Ford, JM, Mathalon, DH, Gollub, R, Lauriello, J, O'Leary, D, van Erp, TG, Toga, AW, Preda, A, Lim, KO (2009). Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophrenia Bulletin 35, 1931.
Sadasivan, P, Dutt, D (1996). SVD based technique for noise reduction in electroencephalographic signals. Signal Processing 55, 179189.
Schlösser, R, Gesierich, T, Kaufmann, B, Vucurevic, G, Hunsche, S, Gawehn, J, Stoeter, P (2003 a). Altered effective connectivity during working memory performance in schizophrenia: a study with fMRI and structural equation modeling. Neuroimage 19, 751763.
Schlösser, R, Gesierich, T, Kaufmann, B, Vucurevic, G, Stoeter, P (2003 b). Altered effective connectivity in drug free schizophrenic patients. Neuroreport 14, 22332237.
Schlösser, RG, Koch, K, Wagner, G, Nenadic, I, Roebel, M, Schachtzabel, C, Axer, M, Schultz, C, Reichenbach, JR, Sauer, H (2008). Inefficient executive cognitive control in schizophrenia is preceded by altered functional activation during information encoding: an fMRI study. Neuropsychologia 46, 336347.
Schlösser, RG, Nenadic, I, Wagner, G, Gullmar, D, von Consbruch, K, Kohler, S, Schultz, CC, Koch, K, Fitzek, C, Matthews, PM, Reichenbach, JR, Sauer, H (2007 a). White matter abnormalities and brain activation in schizophrenia: a combined DTI and fMRI study. Schizophrenia Research 89, 111.
Schlösser, RG, Nenadic, I, Wagner, G, Zysset, S, Koch, K, Sauer, H (2009). Dopaminergic modulation of brain systems subserving decision making under uncertainty: a study with fMRI and methylphenidate challenge. Synapse 63, 429442.
Schlösser, RG, Wagner, G, Sauer, H (2006). Assessing the working memory network: studies with functional magnetic resonance imaging and structural equation modeling. Neuroscience 139, 91–103.
Schlösser, RGM, Koch, K, Wagner, G (2007 b). Assessing the state space of the brain with fMRI: an integrative view of current methods. Pharmacopsychiatry 40 (Suppl. 1), S85S92.
Schneider, F, Habel, U, Reske, M, Kellermann, T, Stocker, T, Shah, NJ, Zilles, K, Braus, DF, Schmitt, A, Schlösser, R, Wagner, M, Frommann, I, Kircher, T, Rapp, A, Meisenzahl, E, Ufer, S, Ruhrmann, S, Thienel, R, Sauer, H, Henn, FA, Gaebel, W (2007). Neural correlates of working memory dysfunction in first-episode schizophrenia patients: an fMRI multi-center study. Schizophrenia Research 89, 198210.
Stephan, KE, Magnotta, VA, White, T, Arndt, S, Flaum, M, O'Leary, DS, Andreasen, NC (2001). Effects of olanzapine on cerebellar functional connectivity in schizophrenia measured by fMRI during a simple motor task. Psychological Medicine 31, 10651078.
Talairach, J, Tournoux, P (1988). Co-planar Stereotaxic Atlas of the Human Brain. Thieme: Stuttgart.
Tan, HY, Sust, S, Buckholtz, JW, Mattay, VS, Meyer-Lindenberg, A, Egan, MF, Weinberger, DR, Callicott, JH (2006). Dysfunctional prefrontal regional specialization and compensation in schizophrenia. American Journal of Psychiatry 163, 19691977.
Wager, TD, Smith, EE (2003). Neuroimaging studies of working memory: a meta-analysis. Cognitive, Affective and Behavioral Neuroscience 3, 255274.
Weinberger, DR (1995). From neuropathology to neurodevelopment. Lancet 346, 552557.
Whalley, HC, Simonotto, E, Marshall, I, Owens, DG, Goddard, NH, Johnstone, EC, Lawrie, SM (2005). Functional disconnectivity in subjects at high genetic risk of schizophrenia. Brain 128, 20972108.
Wolf, DH, Gur, RC, Valdez, JN, Loughead, J, Elliott, MA, Gur, RE, Ragland, JD (2007). Alterations of fronto-temporal connectivity during word encoding in schizophrenia. Psychiatry Research 154, 221232.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed