Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T11:01:43.036Z Has data issue: false hasContentIssue false

Preterm birth associated alterations in brain structure, cognitive functioning and behavior in children from the ABCD dataset

Published online by Cambridge University Press:  27 June 2023

Weibin Ji
Affiliation:
Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
Guanya Li
Affiliation:
Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
Fukun Jiang
Affiliation:
Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
Yaqi Zhang
Affiliation:
Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
Feifei Wu
Affiliation:
Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
Wenchao Zhang
Affiliation:
Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
Yang Hu
Affiliation:
Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
Jia Wang
Affiliation:
Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
Xiaorong Wei
Affiliation:
Kindergarten affiliated to Air Force Medical University, Xi'an, Shaanxi 710032, China
Yuefeng Li
Affiliation:
Department of Neonatology, Shenzhen Luohu Maternity and Child Health Hospital, Shenzhen 518103, China
Peter Manza
Affiliation:
Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
Dardo Tomasi
Affiliation:
Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
Xinbo Gao
Affiliation:
Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications, Chongqing 400065, China Chongqing Institute for Brain: a journal of neurology and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
Gene-Jack Wang*
Affiliation:
Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
Yi Zhang*
Affiliation:
Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
Nora D Volkow*
Affiliation:
Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
*
Corresponding authors: Gene-Jack Wang; Email: gene-jack.wang@nih.gov; Yi Zhang; Email: yizhang@xidian.edu.cn; Nora D Volkow; Email: nvolkow@nida.nih.gov
Corresponding authors: Gene-Jack Wang; Email: gene-jack.wang@nih.gov; Yi Zhang; Email: yizhang@xidian.edu.cn; Nora D Volkow; Email: nvolkow@nida.nih.gov
Corresponding authors: Gene-Jack Wang; Email: gene-jack.wang@nih.gov; Yi Zhang; Email: yizhang@xidian.edu.cn; Nora D Volkow; Email: nvolkow@nida.nih.gov

Abstract

Background

Preterm birth is a global health problem and associated with increased risk of long-term developmental impairments, but findings on the adverse outcomes of prematurity have been inconsistent.

Methods

Data were obtained from the baseline session of the ongoing longitudinal Adolescent Brain and Cognitive Development (ABCD) Study. We identified 1706 preterm children and 1865 matched individuals as Control group and compared brain structure (MRI data), cognitive function and mental health symptoms.

Results

Results showed that preterm children had higher psychopathological risk and lower cognitive function scores compared to controls. Structural MRI analysis indicated that preterm children had higher cortical thickness in the medial orbitofrontal cortex, parahippocampal gyrus, temporal and occipital gyrus; smaller volumes in the temporal and parietal gyrus, cerebellum, insula and thalamus; and smaller fiber tract volumes in the fornix and parahippocampal-cingulum bundle. Partial correlation analyses showed that gestational age and birth weight were associated with ADHD symptoms, picvocab, flanker, reading, fluid cognition composite, crystallized cognition composite and total cognition composite scores, and measures of brain structure in regions involved with emotional regulation, attention and cognition.

Conclusions

These findings suggest a complex interplay between psychopathological risk and cognitive deficits in preterm children that is associated with changes in regional brain volumes, cortical thickness, and structural connectivity among cortical and limbic brain regions critical for cognition and emotional well-being.

Type
Original Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggleton, J. P., & Brown, M. W. (1999). Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. The Behavioral and Brain Sciences, 22(3), 425444, discussion 444–489.CrossRefGoogle ScholarPubMed
Aggleton, J. P., & Brown, M. W. (2006). Interleaving brain systems for episodic and recognition memory. Trends in Cognitive Sciences, 10(10), 455463. doi:10.1016/j.tics.2006.08.003.CrossRefGoogle ScholarPubMed
Alexandrou, G., Martensson, G., Skiold, B., Blennow, M., Aden, U., & Vollmer, B. (2014). White matter microstructure is influenced by extremely preterm birth and neonatal respiratory factors. Acta Paediatrica, 103(1), 4856. doi:10.1111/apa.12445.CrossRefGoogle ScholarPubMed
Arpi, E., & Ferrari, F. (2013). Preterm birth and behaviour problems in infants and preschool-age children: A review of the recent literature. Developmental Medicine and Child Neurology, 55(9), 788796. doi:10.1111/dmcn.12142.CrossRefGoogle ScholarPubMed
Ball, G., Pazderova, L., Chew, A., Tusor, N., Merchant, N., Arichi, T., … Counsell, S. J. (2015). Thalamocortical connectivity predicts cognition in children born preterm. Cerebral Cortex, 25(11), 43104318. doi:10.1093/cercor/bhu331.CrossRefGoogle ScholarPubMed
Barnes-Davis, M. E., Merhar, S. L., Holland, S. K., & Kadis, D. S. (2018). Extremely preterm children exhibit increased interhemispheric connectivity for language: Findings from fMRI-constrained MEG analysis. Developmental Science, 21(6), e12669. doi:10.1111/desc.12669.CrossRefGoogle ScholarPubMed
Barnes-Davis, M. E., Williamson, B. J., Merhar, S. L., Holland, S. K., & Kadis, D. S. (2020 a). Extremely preterm children exhibit altered cortical thickness in language areas. Scientific Reports, 10(1), 10824. doi:10.1038/s41598-020-67662-7.CrossRefGoogle ScholarPubMed
Barnes-Davis, M. E., Williamson, B. J., Merhar, S. L., Holland, S. K., & Kadis, D. S. (2020 b). Rewiring the extremely preterm brain: Altered structural connectivity relates to language function. NeuroImage. Clinical, 25, 102194. doi:10.1016/j.nicl.2020.102194.CrossRefGoogle ScholarPubMed
Bethlehem, R. A. I., Seidlitz, J., White, S. R., Vogel, J. W., Anderson, K. M., Adamson, C., … Alexander-Bloch, A. F. (2022). Brain charts for the human lifespan. Nature, 604(7906), 525533. doi:10.1038/s41586-022-04554-y.CrossRefGoogle ScholarPubMed
Bjuland, K. J., Rimol, L. M., Lohaugen, G. C., & Skranes, J. (2014). Brain volumes and cognitive function in very-low-birth-weight (VLBW) young adults. European Journal of Paediatric Neurology: EJPN: Official Journal of the European Paediatric Neurology Society, 18(5), 578590. doi:10.1016/j.ejpn.2014.04.004.CrossRefGoogle ScholarPubMed
Caldinelli, C., Froudist-Walsh, S., Karolis, V., Tseng, C. E., Allin, M. P., Walshe, M., … Nosarti, C. (2017). White matter alterations to cingulum and fornix following very preterm birth and their relationship with cognitive functions. Neuroimage, 150, 373382. doi:10.1016/j.neuroimage.2017.02.026.CrossRefGoogle ScholarPubMed
Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., & Heitzeg, M. M., … Workgroup, Abcd Imaging Acquisition. (2018). The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 32, 4354. doi:10.1016/j.dcn.2018.03.001.CrossRefGoogle ScholarPubMed
Catani, M., Howard, R. J., Pajevic, S., & Jones, D. K. (2002). Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage, 17(1), 7794. doi:10.1006/nimg.2002.1136.CrossRefGoogle ScholarPubMed
Chawanpaiboon, S., Vogel, J. P., Moller, A. B., Lumbiganon, P., Petzold, M., Hogan, D., … Gulmezoglu, A. M. (2019). Global, regional, and national estimates of levels of preterm birth in 2014: A systematic review and modelling analysis. The Lancet. Global Health, 7(1), e37e46. doi:10.1016/S2214-109X(18)30451-0.CrossRefGoogle ScholarPubMed
Cheng, W., Rolls, E., Gong, W., Du, J., Zhang, J., Zhang, X. Y., … Feng, J. (2021). Sleep duration, brain structure, and psychiatric and cognitive problems in children. Molecular Psychiatry, 26(8), 39924003. doi:10.1038/s41380-020-0663-2.CrossRefGoogle ScholarPubMed
Constable, R. T., Ment, L. R., Vohr, B. R., Kesler, S. R., Fulbright, R. K., Lacadie, C., … Reiss, A. R. (2008). Prematurely born children demonstrate white matter microstructural differences at 12 years of age, relative to term control subjects: An investigation of group and gender effects. Pediatrics, 121(2), 306316. doi:10.1542/peds.2007-0414.CrossRefGoogle ScholarPubMed
Davachi, L., Mitchell, J. P., & Wagner, A. D. (2003). Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 21572162. doi:10.1073/pnas.0337195100.CrossRefGoogle ScholarPubMed
Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968980. doi:10.1016/j.neuroimage.2006.01.021.CrossRefGoogle ScholarPubMed
Durston, S., van Belle, J., & de Zeeuw, P. (2011). Differentiating frontostriatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biological Psychiatry, 69(12), 11781184. doi:10.1016/j.biopsych.2010.07.037.CrossRefGoogle ScholarPubMed
Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., … Dale, A. M. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341355. doi:10.1016/s0896-6273(02)00569-x.CrossRefGoogle ScholarPubMed
Gimenez, M., Junque, C., Vendrell, P., Narberhaus, A., Bargallo, N., Botet, F., & Mercader, J. M. (2006). Abnormal orbitofrontal development due to prematurity. Neurology, 67(10), 18181822. doi:10.1212/01.wnl.0000244485.51898.93.CrossRefGoogle ScholarPubMed
Hack, M., & Taylor, H. G. (2000). Perinatal brain injury in preterm infants and later neurobehavioral function. JAMA, 284(15), 19731974. doi:10.1001/jama.284.15.1973.CrossRefGoogle ScholarPubMed
Hagler, D. J. Jr., Ahmadi, M. E., Kuperman, J., Holland, D., McDonald, C. R., Halgren, E., & Dale, A. M. (2009). Automated white-matter tractography using a probabilistic diffusion tensor atlas: Application to temporal lobe epilepsy. Human Brain Mapping, 30(5), 15351547. doi:10.1002/hbm.20619.CrossRefGoogle ScholarPubMed
Hagler, D. J. Jr., Hatton, S., Cornejo, M. D., Makowski, C., Fair, D. A., Dick, A. S., … Dale, A. M. (2019). Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage, 202, 116091. doi:10.1016/j.neuroimage.2019.116091.CrossRefGoogle ScholarPubMed
Hart, H., Radua, J., Nakao, T., Mataix-Cols, D., & Rubia, K. (2013). Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: Exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry, 70(2), 185198. doi:10.1001/jamapsychiatry.2013.277.CrossRefGoogle ScholarPubMed
Healy, E., Reichenberg, A., Nam, K. W., Allin, M. P., Walshe, M., Rifkin, L., … Nosarti, C. (2013). Preterm birth and adolescent social functioning-alterations in emotion-processing brain areas. The Journal of Pediatrics, 163(6), 15961604. doi:10.1016/j.jpeds.2013.08.011.CrossRefGoogle ScholarPubMed
Hirschberger, R. G., Kuban, K. C. K., O'Shea, T. M., Joseph, R. M., Heeren, T., & Douglass, L. M., … Investigators, Elgan Study. (2018). Co-occurrence and severity of neurodevelopmental burden (cognitive impairment, cerebral palsy, autism spectrum disorder, and epilepsy) at age ten years in children born extremely preterm. Pediatric Neurology, 79, 4552. doi:10.1016/j.pediatrneurol.2017.11.002.CrossRefGoogle ScholarPubMed
Hoffman, E. A., Clark, D. B., Orendain, N., Hudziak, J., Squeglia, L. M., & Dowling, G. J. (2019). Stress exposures, neurodevelopment and health measures in the ABCD study. Neurobiology of Stress, 10, 100157. doi:10.1016/j.ynstr.2019.100157.CrossRefGoogle ScholarPubMed
Horbar, J. D., Carpenter, J. H., Badger, G. J., Kenny, M. J., Soll, R. F., Morrow, K. A., & Buzas, J. S. (2012). Mortality and neonatal morbidity among infants 501 to 1500 grams from 2000 to 2009. Pediatrics, 129(6), 10191026. doi:10.1542/peds.2011-3028.CrossRefGoogle ScholarPubMed
Hutchinson, E. A., De Luca, C. R., Doyle, L. W., Roberts, G., & Anderson, P. J., & Victorian Infant Collaborative Study, Group. (2013). School-age outcomes of extremely preterm or extremely low birth weight children. Pediatrics, 131(4), e1053e1061. doi:10.1542/peds.2012-2311.CrossRefGoogle ScholarPubMed
Johnson, S., & Marlow, N. (2011). Preterm birth and childhood psychiatric disorders. Pediatric Research, 69(5 Pt 2), 11R18R. doi:10.1203/PDR.0b013e318212faa0.CrossRefGoogle ScholarPubMed
Johnson, S., & Wolke, D. (2013). Behavioural outcomes and psychopathology during adolescence. Early Human Development, 89(4), 199207. doi:10.1016/j.earlhumdev.2013.01.014.CrossRefGoogle ScholarPubMed
Jovicich, J., Czanner, S., Greve, D., Haley, E., van der Kouwe, A., Gollub, R., … Dale, A. (2006). Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data. Neuroimage, 30(2), 436443. doi:10.1016/j.neuroimage.2005.09.046.CrossRefGoogle ScholarPubMed
Keunen, K., Kersbergen, K. J., Groenendaal, F., Isgum, I., de Vries, L. S., & Benders, M. J. (2012). Brain tissue volumes in preterm infants: Prematurity, perinatal risk factors and neurodevelopmental outcome: A systematic review. The Journal of Maternal-Fetal & Neonatal Medicine: The Official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 25(Suppl 1), 89100. doi:10.3109/14767058.2012.664343.CrossRefGoogle ScholarPubMed
Liu, L., Oza, S., Hogan, D., Chu, Y., Perin, J., Zhu, J., … Black, R. E. (2016). Global, regional, and national causes of under-5 mortality in 2000-15: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet (London, England), 388(10063), 30273035. doi:10.1016/S0140-6736(16)31593-8.CrossRefGoogle ScholarPubMed
Loh, W. Y., Anderson, P. J., Cheong, J. L. Y., Spittle, A. J., Chen, J., Lee, K. J., … Thompson, D. K. (2020). Longitudinal growth of the basal ganglia and thalamus in very preterm children. Brain Imaging and Behavior, 14(4), 9981011. doi:10.1007/s11682-019-00057-z.CrossRefGoogle ScholarPubMed
Luciana, M., Bjork, J. M., Nagel, B. J., Barch, D. M., Gonzalez, R., Nixon, S. J., & Banich, M. T. (2018). Adolescent neurocognitive development and impacts of substance use: Overview of the adolescent brain cognitive development (ABCD) baseline neurocognition battery. Developmental Cognitive Neuroscience, 32, 6779. doi:10.1016/j.dcn.2018.02.006.CrossRefGoogle ScholarPubMed
Ma, Q., Wang, H., Rolls, E. T., Xiang, S., Li, J., Li, Y., … Li, F. (2022). Lower gestational age is associated with lower cortical volume and cognitive and educational performance in adolescence. BMC Medicine, 20(1), 424. doi:10.1186/s12916-022-02627-3.CrossRefGoogle ScholarPubMed
Maes, H. H. M., Lapato, D. M., Schmitt, J. E., Luciana, M., Banich, M. T., Bjork, J. M., … Neale, M. C. (2023). Genetic and environmental variation in continuous phenotypes in the ABCD study(R). Behavior Genetics, 53(1), 124. doi:10.1007/s10519-022-10123-w.CrossRefGoogle Scholar
Makinson, C. D., & Huguenard, J. R. (2015). Attentional flexibility in the thalamus: Now we're getting SOMwhere. Nature Neuroscience, 18(1), 24. doi:10.1038/nn.3902.CrossRefGoogle ScholarPubMed
Marlow, N., Hennessy, E. M., Bracewell, M. A., & Wolke, D., & Group, E. PICure Study. (2007). Motor and executive function at 6 years of age after extremely preterm birth. Pediatrics, 120(4), 793804. doi:10.1542/peds.2007-0440.CrossRefGoogle ScholarPubMed
Montagna, A., & Nosarti, C. (2016). Socio-emotional development following very preterm birth: Pathways to psychopathology. Frontiers in Psychology, 7, 80. doi:10.3389/fpsyg.2016.00080.CrossRefGoogle ScholarPubMed
Mwaniki, M. K., Atieno, M., Lawn, J. E., & Newton, C. R. (2012). Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: A systematic review. Lancet (London, England), 379(9814), 445452. doi:10.1016/S0140-6736(11)61577-8.CrossRefGoogle ScholarPubMed
Nosarti, C., Giouroukou, E., Healy, E., Rifkin, L., Walshe, M., Reichenberg, A., … Murray, R. M. (2008). Grey and white matter distribution in very preterm adolescents mediates neurodevelopmental outcome. Brain : A Journal of Neurology, 131(Pt 1), 205217. doi:10.1093/brain/awm282.CrossRefGoogle ScholarPubMed
Nosarti, C., Nam, K. W., Walshe, M., Murray, R. M., Cuddy, M., Rifkin, L., & Allin, M. P. (2014). Preterm birth and structural brain alterations in early adulthood. NeuroImage. Clinical, 6, 180191. doi:10.1016/j.nicl.2014.08.005.CrossRefGoogle ScholarPubMed
Paul, S. E., Hatoum, A. S., Fine, J. D., Johnson, E. C., Hansen, I., Karcher, N. R., … Bogdan, R. (2021). Associations between prenatal cannabis exposure and childhood outcomes: Results from the ABCD study. JAMA Psychiatry, 78(1), 6476. doi:10.1001/jamapsychiatry.2020.2902.CrossRefGoogle ScholarPubMed
Pauly, K., Seiferth, N. Y., Kellermann, T., Backes, V., Vloet, T. D., Shah, N. J., … Kircher, T. T. (2008). Cerebral dysfunctions of emotion-cognition interactions in adolescent-onset schizophrenia. Journal of the American Academy of Child and Adolescent Psychiatry, 47(11), 12991310. doi:10.1097/CHI.0b013e318184ff16.CrossRefGoogle ScholarPubMed
Rogers, C. E., Anderson, P. J., Thompson, D. K., Kidokoro, H., Wallendorf, M., Treyvaud, K., … Inder, T. E. (2012). Regional cerebral development at term relates to school-age social-emotional development in very preterm children. Journal of the American Academy of Child and Adolescent Psychiatry, 51(2), 181191. doi:10.1016/j.jaac.2011.11.009.CrossRefGoogle ScholarPubMed
Saragosa-Harris, N. M., Chaku, N., MacSweeney, N., Guazzelli Williamson, V., Scheuplein, M., Feola, B., … Mills, K. L. (2022). A practical guide for researchers and reviewers using the ABCD study and other large longitudinal datasets. Developmental Cognitive Neuroscience, 55, 101115. doi:10.1016/j.dcn.2022.101115.CrossRefGoogle ScholarPubMed
Selten, J. P., & Cantor-Graae, E. (2005). Social defeat: Risk factor for schizophrenia? The British Journal of Psychiatry : the Journal of Mental Science, 187, 101102. doi:10.1192/bjp.187.2.101.CrossRefGoogle ScholarPubMed
Sterne, J. A., White, I. R., Carlin, J. B., Spratt, M., Royston, P., Kenward, M. G., … Carpenter, J. R. (2009). Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ, 338, b2393. doi:10.1136/bmj.b2393.CrossRefGoogle ScholarPubMed
Stevens, W. D., Kahn, I., Wig, G. S., & Schacter, D. L. (2012). Hemispheric asymmetry of visual scene processing in the human brain: Evidence from repetition priming and intrinsic activity. Cerebral Cortex, 22(8), 19351949. doi:10.1093/cercor/bhr273.CrossRefGoogle ScholarPubMed
Travis, K. E., Adams, J. N., Ben-Shachar, M., & Feldman, H. M. (2015). Decreased and increased anisotropy along major cerebral white matter tracts in preterm children and adolescents. PLoS One, 10(11), e0142860. doi:10.1371/journal.pone.0142860.CrossRefGoogle ScholarPubMed
Younge, N., Goldstein, R. F., & Cotten, C. M., & Network, Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research. (2017). Survival and neurodevelopment of periviable infants. The New England Journal of Medicine, 376(19), 18901891. doi:10.1056/NEJMc1703379.CrossRefGoogle ScholarPubMed
Supplementary material: File

Ji et al. supplementary material

Ji et al. supplementary material
Download Ji et al. supplementary material(File)
File 500.6 KB