Skip to main content
×
×
Home

The revolution of personalized psychiatry: will technology make it happen sooner?

  • G. Perna (a1) (a2) (a3), M. Grassi (a1), D. Caldirola (a1) and C. B. Nemeroff (a3)
Abstract

Personalized medicine (PM) aims to establish a new approach in clinical decision-making, based upon a patient's individual profile in order to tailor treatment to each patient's characteristics. Although this has become a focus of the discussion also in the psychiatric field, with evidence of its high potential coming from several proof-of-concept studies, nearly no tools have been developed by now that are ready to be applied in clinical practice. In this paper, we discuss recent technological advances that can make a shift toward a clinical application of the PM paradigm. We focus specifically on those technologies that allow both the collection of massive as much as real-time data, i.e., electronic medical records and smart wearable devices, and to achieve relevant predictions using these data, i.e. the application of machine learning techniques.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The revolution of personalized psychiatry: will technology make it happen sooner?
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The revolution of personalized psychiatry: will technology make it happen sooner?
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The revolution of personalized psychiatry: will technology make it happen sooner?
      Available formats
      ×
Copyright
Corresponding author
*Address for correspondence: G. Perna, Department of Clinical Neurosciences, Villa San Benedetto Menni, Hermanas Hospitalarias, FoRiPsi, via Roma 16, 22032 Albese con Cassano, Como, Italy. (Email: pernagp@gmail.com)
References
Hide All
Amminger, GP, Mechelli, A, Rice, S, Kim, SW, Klier, CM, McNamara, RK, Berk, M, McGorry, PD, Schafer, MR (2015). Predictors of treatment response in young people at ultra-high risk for psychosis who received long-chain omega-3 fatty acids. Translational Psychiatry 5, e495.
Ashton, K (2009). That ‘internet of things’ thing. RFID Journal (http://www.rfidjournal.com/articles/view?4986). Accessed 30 August 2017.
Askland, KD, Garnaat, S, Sibrava, NJ, Boisseau, CL, Strong, D, Mancebo, M, Greenberg, B, Rasmussen, S, Eisen, J (2015). Prediction of remission in obsessive compulsive disorder using a novel machine learning strategy. International Journal of Methods in Psychiatry Research 24, 156169.
Azorin, JM, Bellivier, F, Kaladjian, A, Adida, M, Belzeaux, R, Fakra, E, Hantouche, E, Lancrenon, S, Golmard, JL (2013). Characteristics and profiles of bipolar I patients according to age-at-onset: findings from an admixture analysis. Journal of Affective Disorders 150, 9931000.
Bedi, G, Carrillo, F, Cecchi, GA, Slezak, DF, Sigman, M, Mota, NB, Ribeiro, S, Javitt, DC, Copelli, M, Corcoran, CM (2015). Automated analysis of free speech predicts psychosis onset in high-risk youths. NPJ Schizophrenia 1, 15030.
Bishop, C (1995). Neural Networks for Pattern Recognition. Oxford University Press: New York.
Breiman, L (1998). Arcing classifier (with discussion and a rejoinder by the author). Annals of Statistics 26, 801849.
Breiman, L (2001). Random forests. Machine Learning 45, 532.
Calebi, ME, Aydin, K (2016). Unsupervised Learning Algorithms. Springer: Berlin.
Carpenter, KL, Sprechmann, P, Calderbank, R, Sapiro, G, Egger, HL (2016). Quantifying risk for anxiety disorders in preschool children: a machine learning approach. PLoS ONE 11, e0165524.
Castaneda, C, Nalley, K, Mannion, C, Bhattacharyya, P, Blake, P, Pecora, A, Goy, A, Suh, KS (2015). Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. Journal of Clinical Bioinformatics 5, 4.
Castro, VM, Minnier, J, Murphy, SN, Kohane, I, Churchill, SE, Gainer, V, Cai, T, Hoffnagle, AG, Dai, Y, Block, S, Weill, SR, Nadal-Vicens, M, Pollastri, AR, Rosenquist, JN, Goryachev, S, Ongur, D, Sklar, P, Perlis, RH, Smoller, JW, International Cohort Collection for Bipolar Disorder Consortium (2015). Validation of electronic health record phenotyping of bipolar disorder cases and controls. American Journal of Psychiatry 172, 363372.
Chan, M, Esteve, D, Fourniols, JY, Escriba, C, Campo, E (2012). Smart wearable systems: current status and future challenges. Artificial Intelligence in Medicine 56, 137156.
Chau, SB, Thomas, RE (2015). The AmpliChip: a review of its analytic and clinical validity and clinical utility. Current Drug Safety 10, 113124.
Chekroud, AM, Zotti, RJ, Shehzad, Z, Gueorguieva, R, Johnson, MK, Trivedi, MH, Cannon, TD, Krystal, JH, Corlett, PR (2016). Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry 3, 243250.
Chuang, LC, Kuo, PH (2017). Building a genetic risk model for bipolar disorder from genome-wide association data with random forest algorithm. Scientific Reports 7, 39943.
Cobanoglu, MC, Liu, C, Hu, F, Oltvai, ZN, Bahar, I (2013). Predicting drug-target interactions using probabilistic matrix factorization. Journal of Chemical Information and Modeling 53, 33993409.
Costa e Silva, JA (2013). Personalized medicine in psychiatry: new technologies and approaches. Metabolism 62(Suppl. 1), S40S44.
Cristianini, N, Shawe-Taylor, J (2012). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press: New York, USA.
Department of Health, Royal College of General Practitioners, British Medical Association (2011). The Good Practice Guidelines for GP electronic patient records version 4 (https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/215680/dh_125350.pdf). Accessed 30 August 2017.
Emerson, RW, Adams, C, Nishino, T, Hazlett, HC, Wolff, JJ, Zwaigenbaum, L, Constantino, JN, Shen, MD, Swanson, MR, Elison, JT, Kandala, S, Estes, AM, Botteron, KN, Collins, L, Dager, SR, Evans, AC, Gerig, G, Gu, H, McKinstry, RC, Paterson, S, Schultz, RT, Styner, M, Network, I, Schlaggar, BL, Pruett, JR Jr., Piven, J (2017). Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Science Translational Medicine 9, eaag2882.
Escandell-Montero, P, Chermisi, M, Martinez-Martinez, JM, Gomez-Sanchis, J, Barbieri, C, Soria-Olivas, E, Mari, F, Vila-Frances, J, Stopper, A, Gatti, E, Martin-Guerrero, JD (2014). Optimization of anemia treatment in hemodialysis patients via reinforcement learning. Artificial Intelligence in Medicine 62, 4760.
Faurholt-Jepsen, M, Vinberg, M, Frost, M, Christensen, EM, Bardram, JE, Kessing, LV (2015). Smartphone data as an electronic biomarker of illness activity in bipolar disorder. Bipolar Disorders 17, 715728.
Fraguas, D, Diaz-Caneja, CM, State, MW, O'Donovan, MC, Gur, RE, Arango, C (2017). Mental disorders of known aetiology and precision medicine in psychiatry: a promising but neglected alliance. Psychological Medicine 47, 193197.
Fung, E, Jarvelin, MR, Doshi, RN, Shinbane, JS, Carlson, SK, Grazette, LP, Chang, PM, Sangha, RS, Huikuri, HV, Peters, NS (2015). Electrocardiographic patch devices and contemporary wireless cardiac monitoring. Frontiers in Physiology 6, 149.
Geschwind, DH, Flint, J (2015). Genetics and genomics of psychiatric disease. Science 349, 14891494.
Gilmore, JN (2015). Everywear: the quantified self and wearable fitness technologies. New Media & Society 18, 25242539.
Glenn, T, Monteith, S (2014). New measures of mental state and behavior based on data collected from sensors, smartphones, and the internet. Current Psychiatry Reports 16, 523.
Gummadi, S, Housri, N, Zimmers, TA, Koniaris, LG (2014). Electronic medical record: a balancing act of patient safety, privacy and health care delivery. The American Journal of Medical Sciences 348, 238243.
Hahn, T, Kircher, T, Straube, B, Wittchen, HU, Konrad, C, Strohle, A, Wittmann, A, Pfleiderer, B, Reif, A, Arolt, V, Lueken, U (2015). Predicting treatment response to cognitive behavioral therapy in panic disorder with agoraphobia by integrating local neural information. JAMA Psychiatry 72, 6874.
Haring, C, Banzer, R, Gruenerbl, A, Oehler, S, Bahle, G, Lukowicz, P, Mayora, O (2015). Utilizing smartphones as an effective way to support patients with bipolar disorder: results of the Monarca study. European Psychiatry 30, 558.
Hernandez, J, McDuff, DJ, Picard, RW (2015). Biophone: Physiology monitoring from peripheral smartphone motions. Annuals International Conference of the IEEE Engineering in Medicine and Biology Society: Conference Proceedings, 2015, pp. 71807183.
Howland, RH (2014). Pharmacogenetic testing in psychiatry: not (quite) ready for primetime. Journal of Psychosocial Nursery and Mental Health Services 52, 1316.
Hsiao, CJ, Hing, E (2014). Use and characteristics of electronic health record systems among office-based physician practices: United States, 2001–2013. NCHS Data Brief 143, 18.
Hume, D (1739). A Treatise of Human Nature. John Noon: London.
Johnston, BA, Mwangi, B, Matthews, K, Coghill, D, Konrad, K, Steele, JD (2014). Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification. Human Brain Mapping 35, 51795189.
Kappeler-Setz, C, Schumm, J, Kusserow, M, Arnrich, B, Tröster, G (2013). Towards long term monitoring of electrodermal activity in daily life. Personal and Ubiquitous Computing 17, 261271.
Khodayari-Rostamabad, A, Reilly, JP, Hasey, GM, de Bruin, H, Maccrimmon, DJ (2013). A machine learning approach using EEG data to predict response to SSRI treatment for major depressive disorder. Clinical Neurophysiology 124, 19751985.
Kourou, K, Exarchos, TP, Exarchos, KP, Karamouzis, MV, Fotiadis, DI (2015). Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal 13, 817.
Liu, Y, Sareen, J, Bolton, J, Wang, J (2015). Development and validation of a risk-prediction algorithm for the recurrence of panic disorder. Depression and Anxiety 32, 341348.
Mansson, KN, Frick, A, Boraxbekk, CJ, Marquand, AF, Williams, SC, Carlbring, P, Andersson, G, Furmark, T (2015). Predicting long-term outcome of internet-delivered cognitive behavior therapy for social anxiety disorder using fMRI and support vector machine learning. Translational Psychiatry 5, e530.
McCoy, TH, Castro, VM, Rosenfield, HR, Cagan, A, Kohane, IS, Perlis, RH (2015). A clinical perspective on the relevance of research domain criteria in electronic health records. The American Journal of Psychiatry 172, 316320.
McIntosh, AM, Stewart, R, John, A, Smith, DJ, Davis, K, Sudlow, C, Corvin, A, Nicodemus, KK, Kingdon, D, Hassan, L, Hotopf, M, Lawrie, SM, Russ, TC, Geddes, JR, Wolpert, M, Wolbert, E, Porteous, DJ, MQ Data Science Group (2016). Data science for mental health: a UK perspective on a global challenge. Lancet Psychiatry 3, 993998.
McMahon, FJ (2014). Prediction of treatment outcomes in psychiatry – where do we stand? Dialogues in Clinical Neuroscience 16, 455464.
Mooij, JM, Peters, J, Janzing, D, Zscheischler, J, Schölkopf, B (2016). Distinguishing cause from effect using observational data: methods and benchmarks. Journal of Machine Learning Research 17, 1102.
Myers, AJ (2012). The age of the “ome”: genome, transcriptome and proteome data set collection and analysis. Brain Research Bulletin 88, 294301.
Norman, DA (2013). The Design of Everyday Things. Basic Books: New York.
O'Brien, JT, Gallagher, P, Stow, D, Hammerla, N, Ploetz, T, Firbank, M, Ladha, C, Ladha, K, Jackson, D, McNaney, R, Ferrier, IN, Olivier, P (2017). A study of wrist-worn activity measurement as a potential real-world biomarker for late-life depression. Psychological Medicine 47, 93102.
Osmani, V (2015). Smartphones in mental health: detecting depressive and manic episodes. IEEE Pervasive Computing 14, 1013.
Ozomaro, U, Wahlestedt, C, Nemeroff, CB (2013). Personalized medicine in psychiatry: problems and promises. BMC Medicine 11, 132.
Passos, IC, Mwangi, B, Cao, B, Hamilton, JE, Wu, MJ, Zhang, XY, Zunta-Soares, GB, Quevedo, J, Kauer-Sant'Anna, M, Kapczinski, F, Soares, JC (2016). Identifying a clinical signature of suicidality among patients with mood disorders: a pilot study using a machine learning approach. Journal of Affective Disorders 193, 109116.
Patel, MJ, Andreescu, C, Price, JC, Edelman, KL, Reynolds, CF III, Aizenstein, HJ (2015 a). Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction. International Journal of Geriatric Psychiatry 30, 10561067.
Patel, R, Lloyd, T, Jackson, R, Ball, M, Shetty, H, Broadbent, M, Geddes, JR, Stewart, R, McGuire, P, Taylor, M (2015 b). Mood instability is a common feature of mental health disorders and is associated with poor clinical outcomes. BMJ Open 5, e007504.
Pearl, J (2010). An introduction to causal inference. International Journal of Biostatistics 6, 7.
Perlis, RH (2014). Use of large data sets and the future of personalized treatment. Depression and Anxiety 31, 916919.
Perlis, RH, Iosifescu, DV, Castro, VM, Murphy, SN, Gainer, VS, Minnier, J, Cai, T, Goryachev, S, Zeng, Q, Gallagher, PJ, Fava, M, Weilburg, JB, Churchill, SE, Kohane, IS, Smoller, JW (2012). Using electronic medical records to enable large-scale studies in psychiatry: treatment resistant depression as a model. Psychological Medicine 42, 4150.
Peterson, K, Dieperink, E, Anderson, J, Boundy, E, Ferguson, L, Helfand, M (2017). Rapid evidence review of the comparative effectiveness, harms, and cost-effectiveness of pharmacogenomics-guided antidepressant treatment versus usual care for major depressive disorder. Psychopharmacology 234, 16491661.
Qin, J, Wei, M, Liu, H, Chen, J, Yan, R, Yao, Z, Lu, Q (2015). Altered anatomical patterns of depression in relation to antidepressant treatment: evidence from a pattern recognition analysis on the topological organization of brain networks. Journal of Affective Disorders 180, 129137.
Ravan, M, Hasey, G, Reilly, JP, MacCrimmon, D, Khodayari-Rostamabad, A (2015). A machine learning approach using auditory odd-ball responses to investigate the effect of clozapine therapy. Clinical Neurophysiology 126, 721730.
Russo, M, Van Rheenen, TE, Shanahan, M, Mahon, K, Perez-Rodriguez, MM, Cuesta-Diaz, A, Larsen, E, Malhotra, AK, Burdick, KE (2017). Neurocognitive subtypes in patients with bipolar disorder and their unaffected siblings. Psychological Medicine 7, 114.
Salomoni, G, Grassi, M, Mosini, P, Riva, P, Cavedini, P, Bellodi, L (2009). Artificial neural network model for the prediction of obsessive-compulsive disorder treatment response. Journal of Clinical Psychopharmacology 29, 343349.
Salvador-Carulla, L, Mezzich, JE (2012). Person-centred medicine and mental health. Epidemiological and Psychiatric Sciences 21, 131137.
Samuel, AL (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development 3, 210229.
Setoyama, D, Kato, TA, Hashimoto, R, Kunugi, H, Hattori, K, Hayakawa, K, Sato-Kasai, M, Shimokawa, N, Kaneko, S, Yoshida, S, Goto, YI, Yasuda, Y, Yamamori, H, Ohgidani, M, Sagata, N, Miura, D, Kang, D, Kanba, S (2016). Plasma metabolites predict severity of depression and suicidal ideation in psychiatric patients-a multicenter pilot analysis. PLoS ONE 11, e0165267.
Sokolowska, I, Ngounou Wetie, AG, Wormwood, K, Thome, J, Darie, CC, Woods, AG (2015). The potential of biomarkers in psychiatry: focus on proteomics. Journal of Neural Transmission (Vienna) 122(Suppl. 1), S918.
U.S. Food And Drug Administration (2013). Paving the Way for Personalized Medicine: FDA's Role in a New Era of Medical Product Development (http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/PersonalizedMedicine/UCM372421.pdf). Accessed 30 August 2017.
Van Ameringen, M, Turna, J, Khalesi, Z, Pullia, K, Patterson, B (2017). There is an app for that! The current state of mobile applications (apps) for DSM-5 obsessive-compulsive disorder, posttraumatic stress disorder, anxiety and mood disorders. Depression and Anxiety 34, 526539.
Wall, DP, Kosmicki, J, Deluca, TF, Harstad, E, Fusaro, VA (2012). Use of machine learning to shorten observation-based screening and diagnosis of autism. Translational Psychiatry 2, e100.
Xu, S, Zhang, Y, Jia, L, Mathewson, KE, Jang, KI, Kim, J, Fu, H, Huang, X, Chava, P, Wang, R, Bhole, S, Wang, L, Na, YJ, Guan, Y, Flavin, M, Han, Z, Huang, Y, Rogers, JA (2014). Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 7074.
Xu, Y, Xu, Y, Saria, S (2016). A Bayesian nonparametric approach for estimating individualized treatment-response curves. Journal of Machine Learning Research: Workshop and Conference Proceedings 56, 282300.
Yoo, C, Ramirez, L, Liuzzi, J (2014). Big data analysis using modern statistical and machine learning methods in medicine. International Neurourology Journal 18, 5057.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Psychological Medicine
  • ISSN: 0033-2917
  • EISSN: 1469-8978
  • URL: /core/journals/psychological-medicine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 89
Total number of PDF views: 396 *
Loading metrics...

Abstract views

Total abstract views: 721 *
Loading metrics...

* Views captured on Cambridge Core between 2nd October 2017 - 18th August 2018. This data will be updated every 24 hours.