Skip to main content Accessibility help
×
×
Home

Somatodendritic 5-hydroxytryptamine1A (5-HT1A) autoreceptor function in major depression as assessed using the shift in electroencephalographic frequency spectrum with buspirone

  • R. H. McAllister-Williams (a1), H. A. Alhaj (a2), A. Massey (a3), J. Pankiv (a3) and U. Reckermann (a3)...

Abstract

Background

Positron emission tomography and post-mortem studies of the number of somatodendritic 5-hydroxytryptamine1A (5-HT1A) autoreceptors in raphé nuclei have found both increases and decreases in depression. However, recent genetic studies suggest they may be increased in number and/or function. The current study examined the effect of buspirone on the electroencephalographic (EEG) centroid frequency, a putative index of somatodendritic 5-HT1A receptor functional status, in a cohort of medication-free depressed patients and controls.

Method

A total of 15 depressed patients (nine male) and intelligence quotient (IQ)-, gender- and age-matched healthy controls had resting EEG recorded from 29 scalp electrodes prior to and 30, 60 and 90 min after oral buspirone (30 mg) administration. The effect of buspirone on somatodendritic 5-HT1A receptors was assessed by calculating the EEG centroid frequency between 6 and 10.5 Hz. The effect of buspirone on postsynaptic 5-HT1A receptors was assessed by measuring plasma growth hormone, prolactin and cortisol concentrations.

Results

Analysis of variance revealed a significantly greater effect of buspirone on the EEG centroid frequency in patients compared with controls (F1,28 = 6.55, p = 0.016). There was no significant difference in the neuroendocrine responses between the two groups.

Conclusions

These findings are consistent with an increase in the functional status of somatodendritic, but not postsynaptic, 5-HT1A autoreceptors, in medication-free depressed patients in line with hypotheses based on genetic data. This increase in functional status would be hypothesized to lead to an increase in serotonergic negative feedback, and hence decreased release of 5-HT at raphé projection sites, in depressed patients.

Copyright

Corresponding author

* Address for correspondence: R. H. McAllister-Williams, Academic Psychiatry, Wolfson Research Centre, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 6BE, UK. (Email: r.h.mcallister-williams@ncl.ac.uk)

References

Hide All
Albert, PR, Le Francois, B, Millar, AM (2011). Transcriptional dysregulation of 5-HT1A autoreceptors in mental illness. Molecular Brain 4, 21.
Albert, PR, Zhou, QY, Van Tol, HH, Bunzow, JR, Civelli, O (1990). Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. Journal of Biological Chemistry 265, 58255832.
Alhaj, H, Wisniewski, G, McAllister-Williams, RH (2011). The use of the EEG in measuring therapeutic drug action: focus on depression and antidepressants. Journal of Psychopharmacology 25, 11751191.
Alhaj, HA, Massey, AE, McAllister-Williams, RH (2007). A study of the neural correlates of episodic memory and HPA axis status in drug-free depressed patients and healthy controls. Journal of Psychiatric Research 41, 295304.
Anderer, P, Barbanoj, MJ, Saletu, B, Semlitsch, HV (1993). Restriction to a limited set of EEG-target variables may lead to misinterpretation of pharmaco-EEG results. Neuropsychobiology 27, 112116.
Anderer, P, Saletu, B, Pascual-Marqui, RD (2000). Effect of the 5-HT1A partial agonist buspirone on regional brain electrical activity in man: a functional neuroimaging study using low-resolution electromagnetic tomography (LORETA). Psychiatry Research 100, 8196.
Arango, V, Underwood, MD, Boldrini, M, Tamir, H, Kassir, SA, Hsiung, S, Chen, JJ, Mann, JJ (2001). Serotonin 1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brainstem of depressed suicide victims. Neuropsychopharmacology 25, 892903.
Aznavour, N, Benkelfat, C, Gravel, P, Aliaga, A, Rosa-Neto, P, Bedell, B, Zimmer, L, Descarries, L (2009). MicroPET imaging of 5-HT1A receptors in rat brain: a test–retest [18F]MPPF study. European Journal of Nuclear Medicine and Molecular Imaging 36, 5362.
Barbanoj, MJ, Anderer, P, Antonijoan, RM, Torrent, J, Saletu, B, Jané, F (1994). Topographical pharmaco-EEG mapping of increasing doses of buspirone and its comparison with diazepam. Human Psychopharmacology 9, 101109.
Beck, AT, Ward, CH, Mendelson, M, Mock, J, Erbaugh, J (1961). An inventory for measuring depression. Archives of General Psychiatry 4, 561571.
Bel, N, Artigas, F (1992). Fluvoxamine preferentially increases extracellular 5-hydroxytryptamine in the raphe nuclei: an in vivo microdialysis study. European Journal of Pharmacology 229, 101103.
Bhagwagar, Z, Rabiner, EA, Sargent, PA, Grasby, PM, Cowen, PJ (2004). Persistent reduction in brain serotonin1A receptor binding in recovered depressed men measured by positron emission tomography with [11C]WAY-100635. Molecular Psychiatry 9, 386392.
Blier, P, de Montigny, C (1994). Current advances in the treatment of depression. Trends in Pharmacological Sciences 15, 220226.
Blier, P, Seletti, B, Gilbert, F, Young, SN, Benkelfat, C (2002). Serotonin 1A receptor activation and hypothermia in humans: lack of evidence for a presynaptic mediation. Neuropsychopharmacology 27, 301308.
Bogdanov, NN, Bogdanov, MB (1994). The role of 5-HT1A serotonin and D2 dopamine receptors in buspirone effects on cortical electrical activity in rats. Neuroscience Letters 177, 14.
Boldrini, M, Underwood, MD, Mann, JJ, Arango, V (2008). Serotonin-1A autoreceptor binding in the dorsal raphe nucleus of depressed suicides. Journal of Psychiatric Research 42, 433442.
Briggs, GG, Nebes, RD (1975). Patterns of hand preference in a student population. Cortex 11, 230238.
Clifford, EM, Gartside, SE, Umbers, V, Cowen, PJ, Hajos, M, Sharp, T (1998). Electrophysiological and neurochemical evidence that pindolol has agonist properties at the 5-HT1A autoreceptor in vivo . British Journal of Pharmacology 124, 206212.
Cowen, PJ (2000). Psychopharmacology of 5-HT1A receptors. Nuclear Medicine and Biology 27, 437439.
Czesak, M, Lemonde, S, Peterson, EA, Rogaeva, A, Albert, PR (2006). Cell-specific repressor or enhancer activities of Deaf-1 at a serotonin 1A receptor gene polymorphism. Journal of Neuroscience 26, 18641871.
Deakin, JFW, Graeff, FG (1991). 5-HT and mechanisms of defence. Journal of Psychopharmacology 5, 305315.
Drevets, WC, Frank, E, Price, JC, Kupfer, DJ, Holt, D, Greer, PJ, Huang, Y, Gautier, C, Mathis, C (1999). PET imaging of serotonin 1A receptor binding in depression. Biological Psychiatry 46, 13751387.
Drevets, WC, Thase, ME, Moses-Kolko, EL, Price, J, Frank, E, Kupfer, DJ, Mathis, C (2007). Serotonin-1A receptor imaging in recurrent depression: replication and literature review. Nuclear Medicine and Biology 34, 865877.
Fekedulegn, DB, Andrew, ME, Burchfiel, CM, Violanti, JM, Hartley, TA, Charles, LE, Miller, DB (2007). Area under the curve and other summary indicators of repeated waking cortisol measurements. Psychosomatic Medicine 69, 651659.
First, MB, Spitzer, RL, Gibbon, M, Williams, JB (1997). Structured Clinical Interview for DSM-IV Axis I Disorders, Research Version. Biometrics Research: New York.
Goodyer, IM, Herbert, J, Altham, PM, Pearson, J, Secher, SM, Shiers, HM (1996). Adrenal secretion during major depression in 8- to 16-year-olds, I. Altered diurnal rhythms in salivary cortisol and dehydroepiandrosterone (DHEA) at presentation. Psychological Medicine 26, 245256.
Hamilton, M (1967). Development of a rating scale for primary depressive illness. British Journal of Social and Clinical Psychology 6, 278296.
Hirvonen, J, Karlsson, H, Kajander, J, Lepola, A, Markkula, J, Rasi-Hakala, H, Nagren, K, Salminen, JK, Hietala, J (2008). Decreased brain serotonin 5-HT1A receptor availability in medication-naive patients with major depressive disorder: an in-vivo imaging study using PET and [carbonyl-11C]WAY-100635. International Journal of Neuropsychopharmacology 11, 465476.
Hjorth, S, Sharp, T (1991). Effect of the 5-HT1A receptor agonist 8-OH-DPAT on the release of 5-HT in dorsal and median raphe-innervated rat brain regions as measured by in vivo microdialysis. Life Sciences 48, 17791786.
Holland, RL, Wesnes, K, Dietrich, B (1994). Single dose human pharmacology of umespirone. European Journal of Clinical Pharmacology 46, 461468.
Kelly, JS, Larkman, P, Penington, NJ, Rainnie, DG, McAllister-Williams, H, Hodgkiss, J (1991). Serotonin receptor heterogeneity and the role of potassium channels in neuronal excitability. Advances in Experimental Medicine and Biology 287, 177191.
Lesch, KP, Mayer, S, Disselkamp-Tietze, J, Hoh, A, Schoellnhammer, G, Schulte, HM (1990). Sub-sensitivity of the 5-hydroxytryptamine1A (5-HT1A) receptor mediated hypothermic response to ipsapirone in unipolar depression. Life Sciences 46, 12711277.
Marrosu, F, Fornal, CA, Metzler, CW, Jacobs, BL (1996). 5-HT1A agonists induce hippocampal theta activity in freely moving cats: role of presynaptic 5-HT1A receptors. Brain Research 739, 192200.
Martin, KF, Phillips, I, Hearson, M, Prow, MR, Heal, DJ (1992). Characterization of 8-OH-DPAT-induced hypothermia in mice as a 5-HT1A autoreceptor response and its evaluation as a model to selectively identify antidepressants. British Journal of Pharmacology 107, 1521.
McAllister-Williams, RH, Ferrier, IN, Young, AH (1998). Mood and neuropsychological function in depression: the role of corticosteroids and serotonin. Psychological Medicine 28, 573584.
McAllister-Williams, RH, Kelly, JS (1995). The modulation of calcium channel currents recorded from adult rat dorsal raphe neurones by 5-HT1A receptor or direct G-protein activation. Neuropharmacology 34, 14911506.
McAllister-Williams, RH, Massey, AE (2003). EEG effects of buspirone and pindolol: a method of examining 5-HT1A receptor function in humans. Psychopharmacology 166, 284293.
McAllister-Williams, RH, Massey, AE, Fairchild, G (2007). Repeated cortisol administration attenuates the EEG response to buspirone in healthy volunteers: evidence for desensitization of the 5-HT1A autoreceptor. Journal of Psychopharmacology 21, 826832.
Meltzer, CC, Price, JC, Mathis, CA, Butters, MA, Ziolko, SK, Moses-Kolko, E, Mazumdar, S, Mulsant, BH, Houck, PR, Lopresti, BJ, Weissfeld, LA, Reynolds, CF (2004). Serotonin 1A receptor binding and treatment response in late-life depression. Neuropsychopharmacology 29, 22582265.
Meltzer, HY, Maes, M (1994). Effects of buspirone on plasma prolactin and cortisol levels in major depressed and normal subjects. Biological Psychiatry 35, 316323.
Meltzer, HY, Maes, M (1995). Effects of ipsapirone on plasma cortisol and body temperature in major depression. Biological Psychiatry 38, 450457.
Montgomery, SA, Asberg, M (1979). A new depression scale designed to be sensitive to change. British Journal of Psychiatry 134, 382389.
Murasaki, M, Miura, S, Ishigooka, J, Ishii, Y, Takahashi, A, Fukuyama, Y (1989). Phase I study of a new antianxiety drug, buspirone. Progress in Neuro-psychopharmacology and Biological Psychiatry 13, 137144.
Navinés, R, Gómez-Gil, E, Martín-Santos, R, de Osaba, MJ, Escolar, G, Gastó, C (2007). Hormonal response to buspirone is not impaired in major depression. Human Psychopharmacology 22, 389395.
Nitz, DA, McNaughton, BL (1999). Hippocampal EEG and unit activity responses to modulation of serotonergic median raphe neurons in the freely behaving rat. Learning and Memory 6, 153167.
Parsey, RV, Ogden, RT, Miller, JM, Tin, A, Hesselgrave, N, Goldstein, E, Mikhno, A, Milak, M, Zanderigo, F, Sullivan, GM, Oquendo, MA, Mann, JJ (2010). Higher serotonin 1A binding in a second major depression cohort: modeling and reference region considerations. Biological Psychiatry 68, 170178.
Parsey, RV, Oquendo, MA, Ogden, RT, Olvet, DM, Simpson, N, Huang, YY, Van Heertum, RL, Arango, V, Mann, JJ (2006). Altered serotonin 1A binding in major depression: a [carbonyl-C-11]WAY100635 positron emission tomography study. Biological Psychiatry 59, 106113.
Saletu, B, Grunberger, J, Linzmayer, L (1986). On central effects of serotonin re-uptake inhibitors: quantitative EEG and psychometric studies with sertraline and zimelidine. Journal of Neural Transmission 67, 241266.
Sargent, PA, Kjaer, KH, Bench, CJ, Rabiner, EA, Messa, C, Meyer, J, Gunn, RN, Grasby, PM, Cowen, PJ (2000). Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Archives of General Psychiatry 57, 174180.
Savitz, J, Lucki, I, Drevets, WC (2009). 5-HT1A receptor function in major depressive disorder. Progress in Neurobiology 88, 1731.
Seifritz, E, Moore, P, Trachsel, L, Bhatti, T, Stahl, SM, Gillin, JC (1996). The 5-HT1A agonist ipsapirone enhances EEG slow wave activity in human sleep and produces a power spectrum similar to 5-HT2 blockade. Neuroscience Letters 209, 4144.
Semlitsch, HV, Anderer, P, Schuster, P, Presslich, O (1986). A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology 23, 695703.
Stockmeier, CA, Shapiro, LA, Dilley, GE, Kolli, TN, Friedman, L, Rajkowska, G (1998). Increase in serotonin-1A autoreceptors in the midbrain of suicide victims with major depression – postmortem evidence for decreased serotonin activity. Journal of Neuroscience 18, 73947401.
Vertes, RP, Kinney, GG, Kocsis, B, Fortin, WJ (1994). Pharmacological suppression of the median raphe nucleus with serotonin1A agonists, 8-OH-DPAT and buspirone, produces hippocampal theta rhythm in the rat. Neuroscience 60, 441451.
Vickers, AJ, Altman, DG (2001). Statistics notes: analysing controlled trials with baseline and follow up measurements. British Medical Journal 323, 11231124.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Psychological Medicine
  • ISSN: 0033-2917
  • EISSN: 1469-8978
  • URL: /core/journals/psychological-medicine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed