Skip to main content
×
×
Home

A systematic review of the psychometric properties, usability and clinical impacts of mobile mood-monitoring applications in young people

  • M. Dubad (a1), C. Winsper (a1), C. Meyer (a1) (a2), M. Livanou (a1) and S. Marwaha (a1) (a3)...
Abstract
Background

Mobile mood-monitoring applications are increasingly used by mental health providers, widely advocated within research, and a potentially effective method to engage young people. However, little is known about their efficacy and usability in young populations.

Method

A systematic review addressing three research questions focused on young people: (1) what are the psychometric properties of mobile mood-monitoring applications; (2) what is their usability; and (3) what are their positive and negative clinical impacts? Findings were synthesised narratively, study quality assessed and compared with evidence from adult studies.

Results

We reviewed 25 articles. Studies on the psychometric properties of mobile mood-monitoring applications were sparse, but indicate questionable to excellent internal consistency, moderate concurrent validity and good usability. Participation rates ranged from 30% to 99% across studies, and appeared to be affected by methodological factors (e.g. payments) and individual characteristics (e.g. IQ score). Mobile mood-monitoring applications are positively perceived by youth, may reduce depressive symptoms by increasing emotional awareness, and could aid in the detection of mental health and substance use problems. There was very limited evidence on potential negative impacts.

Conclusions

Evidence for the use of mood-monitoring applications in youth is promising but limited due to a lack of high-quality studies. Future work should explicate the effects of mobile mood-monitoring applications on effective self-regulation, clinical outcomes across disorders and young people's engagement with mental health services. Potential negative impacts in this population should also be investigated, as the adult literature suggests that application use could potentially increase negativity and depression symptoms.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A systematic review of the psychometric properties, usability and clinical impacts of mobile mood-monitoring applications in young people
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A systematic review of the psychometric properties, usability and clinical impacts of mobile mood-monitoring applications in young people
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A systematic review of the psychometric properties, usability and clinical impacts of mobile mood-monitoring applications in young people
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
*Address for correspondence: M. Dubad, BSc, MRes, Mental Health and Wellbeing, Division of Health Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK. (Email: m.dubad@warwick.ac.uk)
References
Hide All
Ainsworth, J, Palmier-Claus, JE, Machin, M, Barrowclough, C, Dunn, G, Rogers, A, Buchan, I, Barkus, E, Kapur, S, Wykes, T, Hopkins, RS, Lewis, S (2013). A comparison of two delivery modalities of a mobile phone-based assessment for serious mental illness: native smartphone application vs text-messaging only implementations. Journal of Medical Internet Research 15, e60.
Ansell, EB, Laws, HB, Roche, MJ, Sinha, R (2015). Effects of marijuana use on impulsivity and hostility in daily life. Drug and Alcohol Dependence 148, 136142.
Bachmann, A, Klebsattel, C, Budde, M, Riedel, T, Beigl, M, Reichert, M, Santangelo, P, Ebner-Priemer, U (2015). How to use smartphones for less obtrusive ambulatory mood assessment and mood recognition. In Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers, pp. 693702. ACM: Osaka.
Bakker, D, Kazantzis, N, Rickwood, D, Rickard, N (2016). Mental health smartphone apps: review and evidence-based recommendations for future developments. Journal of Medical Internet Research Mental Health 3, e7.
Bardram, JE, Frost, M, Szántó, K, Faurholt-Jepsen, M, Vinberg, M, Kessing, LV (2013). Designing mobile health technology for bipolar disorder: a field trial of the monarca system. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2627–2636. ACM: Paris.
Ben-Zeev, D, Brenner, CJ, Begale, M, Duffecy, J, Mohr, DC, Mueser, KT (2014). Feasibility, acceptability, and preliminary efficacy of a smartphone intervention for schizophrenia. Schizophrenia Bulletin 40, 12441253.
Ben-Zeev, D, Scherer, EA, Wang, R, Xie, H, Campbell, AT (2015). Next-generation psychiatric assessment: using smartphone sensors to monitor behavior and mental health. Psychiatric Rehabilitation Journal 38, 218226.
Bolger, N, Davis, A, Rafaeli, E (2003). Diary methods: capturing life as it is lived. Annual Review of Psychology 54, 579616.
Bossmann, T, Kanning, M, Koudela-Hamila, S, Hey, S, Ebner-Priemer, U (2013). The association between short periods of everyday life activities and affective states: a replication study using ambulatory assessment. Frontiers in Psychology 4, 102.
Bradford, S, Rickwood, D (2014). Adolescent's preferred modes of delivery for mental health services. Child and Adolescent Mental Health 19, 3945.
Buysse, DJ, Reynolds, CF, Monk, TH, Berman, SR, Kupfer, DJ (1989). The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Research 28, 193213.
Carver, CS, Scheier, MF, Weintraub, JK (1989). Assessing coping strategies: a theoretically based approach. Journal of Personality and Social Psychology 56, 267283.
Conner, TS, Reid, KA (2012). Effects of intensive mobile happiness reporting in daily life. Social Psychological and Personality Science 3, 315323.
Connor-Smith, JK, Compas, BE, Wadsworth, ME, Thomsen, AH, Saltzman, H (2000). Responses to stress in adolescence: measurement of coping and involuntary stress responses. Journal of Consulting and Clinical Psychology 68, 976992.
Cristobal-Narvaez, P, Sheinbaum, T, Ballespi, S, Mitjavila, M, Myin-Germeys, I, Kwapil, TR, Barrantes-Vidal, N (2016). Impact of adverse childhood experiences on psychotic-like symptoms and stress reactivity in daily life in nonclinical young adults. PLoS ONE 11, e0153557.
Crooke, AH, Reid, SC, Kauer, SD, McKenzie, DP, Hearps, SJ, Khor, AS, Forbes, AB (2013). Temporal mood changes associated with different levels of adolescent drinking: using mobile phones and experience sampling methods to explore motivations for adolescent alcohol use. Drug and Alcohol Review 32, 262268.
Crowell, SE, Beauchaine, TP, Linehan, MM (2009). A biosocial developmental model of borderline personality: elaborating and extending Linehan's theory. Psychological Bulletin 135, 495510.
Dennis, ML, Scott, CK, Funk, RR, Nicholson, L (2015). A pilot study to examine the feasibility and potential effectiveness of using smartphones to provide recovery support for adolescents. Substance Abuse 36, 486492.
Department of Health (2013). Annual Report of the Chief Medical Officer 2013, Public Mental Health Priorities: Investing in the Evidence. (https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/413196/CMO_web_doc.pdf).
Depp, CA, Ceglowski, J, Wang, VC, Yaghouti, F, Mausbach, BT, Thompson, WK, Granholm, EL (2015). Augmenting psychoeducation with a mobile intervention for bipolar disorder: a randomized controlled trial. Journal of Affective Disorders 174, 2330.
Depp, CA, Kim, DH, de Dios, LV, Wang, V, Ceglowski, J (2012). A pilot study of mood ratings captured by mobile phone versus paper-and-pencil mood charts in bipolar disorder. Journal of Dual Diagnosis 8, 326332.
Donker, T, Petrie, K, Proudfoot, J, Clarke, J, Birch, MR, Christensen, H (2013). Smartphones for smarter delivery of mental health programs: a systematic review. Journal of Medical Internet Research 15, e247.
Dunton, GF, Huh, J, Leventhal, AM, Riggs, N, Hedeker, D, Spruijt-Metz, D, Pentz, MA (2014). Momentary assessment of affect, physical feeling states, and physical activity in children. Health Psychology 33, 255263.
Dunton, GF, Liao, Y, Intille, S, Wolch, J, Pentz, MA (2011). Physical and social contextual influences on children's leisure-time physical activity: an ecological momentary assessment study. Journal of Physical Activity and Health 8 (Suppl. 1), S103S108.
Ebner-Priemer, UW, Trull, TJ (2009). Ecological momentary assessment of mood disorders and mood dysregulation. Psychological Assessment 21, 463475.
Faurholt-Jepsen, M, Frost, M, Ritz, C, Christensen, EM, Jacoby, AS, Mikkelsen, RL, Knorr, U, Bardram, JE, Vinberg, M, Kessing, LV (2015). Daily electronic self-monitoring in bipolar disorder using smartphones – the MONARCA I trial: a randomized, placebo-controlled, single-blind, parallel group trial. Psychological Medicine 45, 26912704.
Faurholt-Jepsen, M, Frost, M, Vinberg, M, Christensen, EM, Bardram, JE, Kessing, LV (2014). Smartphone data as objective measures of bipolar disorder symptoms. Psychiatry Research 217, 124127.
Faurholt-Jepsen, M, Munkholm, K, Frost, M, Bardram, JE, Kessing, LV (2016). Electronic self-monitoring of mood using IT platforms in adult patients with bipolar disorder: a systematic review of the validity and evidence. BioMed Central Psychiatry 16, 1.
Firth, J, Torous, J, Yung, AR (2016). Ecological momentary assessment and beyond: the rising interest in e-mental health research. Journal of Psychiatric Research 80, 34.
Fleischer, M, Schäfer, M, Coogan, A, Häßler, F, Thome, J (2012). Sleep disturbances and circadian CLOCK genes in borderline personality disorder. Journal of Neural Transmission 119, 11051110.
George, D, Mallery, P (2003). SPSS for Windows Step by Step: A Simple Guide and Reference, 11.0 Update. Allyn & Bacon: Boston.
Grunerbl, A, Muaremi, A, Osmani, V, Bahle, G, Ohler, S, Troster, G, Mayora, O, Haring, C, Lukowicz, P (2015). Smartphone-based recognition of states and state changes in bipolar disorder patients. Institute of Electrical and Electronics Engineers Journal of Biomedical and Health Informatics 19, 140148.
Higgins, JPT, Altman, DG, Gøtzsche, PC, Jüni, P, Moher, D, Oxman, AD, Savović, J, Schulz, KF, Weeks, L, Sterne, JAC, Cochrane Bias Methods Group, Cochrane Statistical Methods Group (2011). The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 343, d5928.
HM Government (2011). No Health without Mental Health: a Cross-Government Mental Health Outcomes Strategy for People of All Ages. (https://www.rcpsych.ac.uk/PDF/No%20Health%20without%20Mental%20Health.pdf).
Hollis, C, Falconer, CJ, Martin, JL, Whittington, C, Stockton, S, Glazebrook, C, Davies, EB (2016). Annual research review: digital health interventions for children and young people with mental health problems – a systematic and meta-review. Journal of Child Psychology and Psychiatry 58, 474503.
Huh, J, Shin, H, Leventhal, AM, Spruijt-Metz, D, Abramova, Z, Cerrada, C, Hedeker, D, Dunton, G (2014). Momentary negative moods and being with friends precede cigarette use among Korean American emerging adults. Nicotine and Tobacco Research 16, 12481254.
ISO/IEC 9126-1 (2001). Software Engineering – Product Quality – Part 1: Quality Model. International Organization for Standardization: Geneva.
Karver, MS, Handelsman, JB, Fields, S, Bickman, L (2006). Meta-analysis of therapeutic relationship variables in youth and family therapy: the evidence for different relationship variables in the child and adolescent treatment outcome literature. Clinical Psychology Review 26, 5065.
Kauer, SD, Reid, SC, Crooke, AHD, Khor, A, Hearps, SJC, Jorm, AF, Sanci, L, Patton, G (2012). Self-monitoring using mobile phones in the early stages of adolescent depression: randomized controlled trial. Journal of Medical Internet Research 14, e67.
Kauer, SD, Reid, SC, Sanci, L, Patton, GC (2009). Investigating the utility of mobile phones for collecting data about adolescent alcohol use and related mood, stress and coping behaviours: lessons and recommendations. Drug and Alcohol Review 28, 2530.
Kenny, R, Dooley, B, Fitzgerald, A (2015). Feasibility of ‘CopeSmart’: a telemental health app for adolescents. Journal of Medical Internet Research Mental Health 2, e22.
Khor, AS, Gray, KM, Reid, SC, Melvin, GA (2014 a). Feasibility and validity of ecological momentary assessment in adolescents with high-functioning autism and Asperger's disorder. Journal of Adolescence 37, 3746.
Khor, AS, Melvin, GA, Reid, SC, Gray, KM (2014 b). Coping, daily hassles and behavior and emotional problems in adolescents with high-functioning autism/Asperger's disorder. Journal of Autism and Developmental Disorders 44, 593608.
Lederer, N, Grechenig, T, Baranyi, R (2014). unCUT: bridging the gap from paper diary cards towards mobile electronic monitoring solutions in borderline and self-injury. In 2014 IEEE 3rd International Conference on Serious Games and Applications for Health (SeGAH), pp. 18. IEEE: Rio de Janeiro.
Loventoft, PK, Norregaard, LB, Frokjaer, E (2012). Designing daybuilder: an experimental app to support people with depression. In Proceedings of the 12th Participatory Design Conference: Exploratory Papers, Workshop Descriptions, Industry Cases – vol. 2, pp. 1–4. ACM: Roskilde.
Lupton, D (2013). Quantifying the body: monitoring and measuring health in the age of mHealth technologies. Critical Public Health 23, 393403.
Marwaha, S, Balbuena, L, Winsper, C, Bowen, R (2015). Mood instability as a precursor to depressive illness: a prospective and mediational analysis. Australian and New Zealand Journal of Psychiatry 49, 557565.
Matthews, M, Doherty, G (2011). In the mood: engaging teenagers in psychotherapy using mobile phones. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 29472956. ACM: Vancouver.
Matthews, M, Doherty, G, Coyle, D, Sharry, J (2008 a). Designing mobile applications to support mental health interventions. In Handbook of Research on User Interface Design and Evaluation for Mobile Technology (ed. Lumsden, J.), pp. 635656. IGI Global: Hershey.
Matthews, M, Doherty, G, Sharry, J, Fitzpatrick, C (2008 b). Mobile phone mood charting for adolescents. British Journal of Guidance and Counselling 36, 113129.
Moher, D, Liberati, A, Tetzlaff, J, Altman, DG, The PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of Internal Medicine 151, 264269, w264.
Myin-Germeys, I, Klippel, A, Steinhart, H, Reininghaus, U (2016). Ecological momentary interventions in psychiatry. Current Opinion in Psychiatry 29, 258263.
Naslund, JA, Marsch, LA, McHugo, GJ, Bartels, SJ (2015). Emerging mHealth and eHealth interventions for serious mental illness: a review of the literature. Journal of Mental Health 24, 321332.
NCCMH (2014). E-therapies Systematic Review for Children and Young People with Mental Health Problems. NCCMH: London.
Nicholas, J, Larsen, ME, Proudfoot, J, Christensen, H (2015). Mobile apps for bipolar disorder: a systematic review of features and content quality. Journal of Medical Internet Research 17, e198.
Ofcom (2015). The Communications Market Report. (https://www.ofcom.org.uk/__data/assets/pdf_file/0022/20668/cmr_uk_2015.pdf).
Olff, M (2015). Mobile mental health: a challenging research agenda. European Journal of Psychotraumatology 6, 27882.
Palmier-Claus, JE, Ainsworth, J, Machin, M, Barrowclough, C, Dunn, G, Barkus, E, Rogers, A, Wykes, T, Kapur, S, Buchan, I, Salter, E, Lewis, SW (2012). The feasibility and validity of ambulatory self-report of psychotic symptoms using a smartphone software application. BioMed Central Psychiatry 12, 172.
Palmier-Claus, JE, Rogers, A, Ainsworth, J, Machin, M, Barrowclough, C, Laverty, L, Barkus, E, Kapur, S, Wykes, T, Lewis, SW (2013). Integrating mobile-phone based assessment for psychosis into people's everyday lives and clinical care: a qualitative study. BioMed Central Psychiatry 13, 34.
Palmier-Claus, JE, Taylor, PJ, Ainsworth, J, Machin, M, Dunn, G, Lewis, SW (2014). The temporal association between self-injurious thoughts and psychotic symptoms: a mobile phone assessment study. Suicide and Life-Threatening Behavior 44, 101110.
Paris, J (2004). Borderline or bipolar? Distinguishing borderline personality disorder from bipolar spectrum disorders. Harvard Review of Psychiatry 12, 140145.
Prentice, JL, Dobson, KS (2014). A review of the risks and benefits associated with mobile phone applications for psychological interventions. Canadian Psychology/Psychologie Canadienne 55, 282290.
Proctor, E, Silmere, H, Raghavan, R, Hovmand, P, Aarons, G, Bunger, A, Griffey, R, Hensley, M (2011). Outcomes for implementation research: conceptual distinctions, measurement challenges, and research agenda. Administration and Policy in Mental Health 38, 6576.
Reid, SC, Kauer, SD, Dudgeon, P, Sanci, LA, Shrier, LA, Patton, GC (2009). A mobile phone program to track young people's experiences of mood, stress and coping: development and testing of the mobiletype program. Social Psychiatry and Psychiatric Epidemiology 44, 501507.
Reid, SC, Kauer, SD, Hearps, SJC, Crooke, AHD, Khor, AS, Sanci, LA, Patton, GC (2011). A mobile phone application for the assessment and management of youth mental health problems in primary care: a randomised controlled trial. BioMed Central Family Practice 12, 131.
Reid, SC, Kauer, SD, Hearps, SJC, Crooke, AHD, Khor, AS, Sanci, LA, Patton, GC (2013). A mobile phone application for the assessment and management of youth mental health problems in primary care: health service outcomes from a randomised controlled trial of mobiletype. BioMed Central Family Practice 14, 84.
Reid, SC, Kauer, SD, Khor, AS, Hearps, SJC, Sanci, LA, Kennedy, AD, Patton, GC (2012). Using a mobile phone application in youth mental health: an evaluation study. Australian Family Physician 41, 711714.
Sacco, GR (2015). Developing a Smartphone Application for Depression: Tracking Risk and Wellness Factors. M.A. University of Delaware.
Sandstrom, GM, Lathia, N, Mascolo, C, Rentfrow, PJ (2016 a). Opportunities for smartphones in clinical care: the future of mobile mood monitoring. Journal of Clinical Psychiatry 77, e135e137.
Sandstrom, GM, Lathia, N, Mascolo, C, Rentfrow, PJ (2016 b). Putting mood in context: Using smartphones to examine how people feel in different locations. Journal of Research in Personality (http://dx.doi.org/10.1016/j.jrp.2016.06.004).
Schwartz, JE, Neale, J, Marco, C, Shiffman, SS, Stone, AA (1999). Does trait coping exist? A momentary assessment approach to the evaluation of traits. Journal of Personality and Social Psychology 77, 360369.
Scotti, JF (2015). School-based DBT skills groups for adolescent eating disorders and body image concerns: a pilot study. Ph.D. University of Montana.
Seko, Y, Kidd, S, Wiljer, D, McKenzie, K (2014). Youth mental health interventions via mobile phones: a scoping review. Cyberpsychology, Behavior and Social Networking 17, 591602.
Shiffman, S, Stone, AA, Hufford, MR (2008). Ecological momentary assessment. Annual Review of Clinical Psychology 4, 132.
Stone, AA, Shiffman, S, Schwartz, JE, Broderick, JE, Hufford, MR (2003). Patient compliance with paper and electronic diaries. Controlled Clinical Trials 24, 182199.
Thomée, S, Härenstam, A, Hagberg, M (2011). Mobile phone use and stress, sleep disturbances, and symptoms of depression among young adults – a prospective cohort study. BioMed Central Public Health 11, 66.
Torous, J, Firth, J (2016). The digital placebo effect: mobile mental health meets clinical psychiatry. Lancet Psychiatry 3, 100102.
Torous, J, Powell, AC (2015). Current research and trends in the use of smartphone applications for mood disorders. Internet Interventions 2, 169173.
Tregarthen, JP, Lock, J, Darcy, AM (2015). Development of a smartphone application for eating disorder self-monitoring. International Journal of Eating Disorders 48, 972982.
Trull, TJ, Lane, SP, Koval, P, Ebner-Priemer, UW (2015). Affective dynamics in psychopathology. Emotion Review 7, 355361.
van Knippenberg, RJM, de Vugt, ME, Ponds, RW, Myin-Germeys, I, van Twillert, B, Verhey, FRJ (2016). Dealing with daily challenges in dementia (deal-id study): an experience sampling study to assess caregiver functioning in the flow of daily life. International Journal of Geriatric Psychiatry (https://dx.doi.org/10.1002/gps.4552).
Walsh, S, Golden, E, Priebe, S (2016). Systematic review of patients’ participation in and experiences of technology-based monitoring of mental health symptoms in the community. BMJ Open 6, e008362.
Wang, R, Chen, F, Chen, Z, Li, T, Harari, G, Tignor, S, Zhou, X, Ben-Zeev, D, Campbell, AT (2014). StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 314. ACM: Seattle.
Watson, D, Clark, LA, Tellegen, A (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of Personality and Social Psychology 54, 10631070.
Wenze, SJ, Miller, IW (2010). Use of ecological momentary assessment in mood disorders research. Clinical Psychology Review 30, 794804.
World Health Organisation (1986). Young people's health: a challenge for society – Report of a WHO Study Group on Young People and Health for All by the Year 2000. World Health Organisation Technical Report Series 731. World Health Organisation: Geneva.
Yen, S, Frazier, E, Hower, H, Weinstock, LM, Topor, DR, Hunt, J, Goldstein, TR, Goldstein, BI, Gill, MK, Ryan, ND, Strober, M, Birmaher, B, Keller, MB (2015). Borderline personality disorder in transition age youth with bipolar disorder. Acta Psychiatrica Scandinavica 132, 270280.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Psychological Medicine
  • ISSN: 0033-2917
  • EISSN: 1469-8978
  • URL: /core/journals/psychological-medicine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Dubad supplementary material
Table S1

 Word (14 KB)
14 KB
WORD
Supplementary materials

Dubad supplementary material
Figure S1

 Word (16 KB)
16 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 209
Total number of PDF views: 914 *
Loading metrics...

Abstract views

Total abstract views: 1264 *
Loading metrics...

* Views captured on Cambridge Core between 23rd June 2017 - 19th August 2018. This data will be updated every 24 hours.