Skip to main content
×
×
Home

Systemic inflammation and intelligence in early adulthood and subsequent risk of schizophrenia and other non-affective psychoses: a longitudinal cohort and co-relative study

  • Nils Kappelmann (a1) (a2), Golam M Khandaker (a1) (a3), Henrik Dal (a4), Jan Stochl (a1) (a5), Kyriaki Kosidou (a4) (a6), Peter B Jones (a1) (a3), Christina Dalman (a4) (a6) and Håkan Karlsson (a7)...
Abstract
Background

Schizophrenia is associated with impaired neurodevelopment as indexed by lower premorbid IQ. We examined associations between erythrocyte sedimentation rate (ESR), a marker of low-grade systemic inflammation, IQ, and subsequent schizophrenia and other non-affective psychoses (ONAP) to elucidate the role of neurodevelopment and inflammation in the pathogenesis of psychosis.

Methods

Population-based data on ESR and IQ from 638 213 Swedish men assessed during military conscription between 1969 and 1983 were linked to National Hospital Discharge Register for hospitalisation with schizophrenia and ONAP. The associations of ESR with IQ (cross-sectional) and psychoses (longitudinal) were investigated using linear and Cox-regression. The co-relative analysis was used to examine effects of shared familial confounding. We examined mediation and moderation of effect between ESR and IQ on psychosis risk.

Results

Baseline IQ was associated with subsequent risk of schizophrenia (adjusted HR per 1-point increase in IQ = 0.961; 95% confidence interval (CI) 0.960–0.963) and ONAP (adjusted HR = 0.973; 95% CI 0.971–0.975). Higher ESR was associated with lower IQ in a dose-response fashion. High ESR was associated with increased risk for schizophrenia (adjusted HR = 1.14; 95% CI 1.01–1.28) and decreased risk for ONAP (adjusted HR = 0.85; 95% CI 0.74–0.96), although these effects were specific to one ESR band (7–10 mm/hr). Familial confounding explained ESR-IQ but not ESR-psychoses associations. IQ partly mediated the ESR-psychosis relationships.

Conclusions

Lower IQ is associated with low-grade systemic inflammation and with an increased risk of schizophrenia and ONAP in adulthood. Low-grade inflammation may influence schizophrenia risk by affecting neurodevelopment. Future studies should explore the differential effects of inflammation on different types of psychosis.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Systemic inflammation and intelligence in early adulthood and subsequent risk of schizophrenia and other non-affective psychoses: a longitudinal cohort and co-relative study
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Systemic inflammation and intelligence in early adulthood and subsequent risk of schizophrenia and other non-affective psychoses: a longitudinal cohort and co-relative study
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Systemic inflammation and intelligence in early adulthood and subsequent risk of schizophrenia and other non-affective psychoses: a longitudinal cohort and co-relative study
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Author for correspondence: Nils Kappelmann, E-mail: n.kappelmann@gmail.com
Footnotes
Hide All
*

Joint first authors

Footnotes
References
Hide All
Ahlborg, B, et al. (1973) Ett hälso-och kapacitetsundersökningssystem för personalselektion. Försvarsmedicin 9, 3652.
Asp, L, et al. (2009) Neonatal infection with neurotropic influenza A virus affects working memory and expression of type III Nrg1 in adult mice. Brain, Behavior, and Immunity 23, 733741.
Benros, ME, et al. (2016) Influence of polygenic risk scores on the association between infections and schizophrenia. Biological Psychiatry 80, 609616.
Blomstrom, A, et al. (2016) Associations between maternal infection during pregnancy, childhood infections, and the risk of subsequent psychotic disorder-A Swedish cohort study of nearly 2 million individuals. Schizophrenia Bulletin 42, 125133.
Brown, AS, et al. (2004) Serologic evidence of prenatal influenza in the etiology of schizophrenia. Archives of General Psychiatry 61, 774780.
Cannon, M, et al. (2002) Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: results from a longitudinal birth cohort. Archives of General Psychiatry 59, 449456.
Cannon, TD, et al. (2000) Childhood cognitive functioning in schizophrenia patients and their unaffected siblings: a prospective cohort study. Schizophrenia Bulletin 26, 379.
Casserly, I and Topol, EJ (2004) Convergence of atherosclerosis and Alzheimer's disease: inflammation, cholesterol, and misfolded proteins. The Lancet 363, 11391146.
Cooke, GS and Hill, AVS (2001) Genetics of susceptibility to human infectious disease. Nature Reviews Genetics 2, 967977.
Crow, TJ, Done, DJ and Sacker, A (1995) Childhood precursors of psychosis as clues to its evolutionary origins. European Archives of Psychiatry and Clinical Neurosciences 245, 6169.
Dalman, C, et al. (2008) Infections in the CNS during childhood and the risk of subsequent psychotic illness: a cohort study of more than One million Swedish subjects. American Journal of Psychiatry 165, 5965.
David, AS, et al. (1997) IQ and risk for schizophrenia: a population-based cohort study. Psychological Medicine 27, 13111323.
Davidson, M, et al. (1999) Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. American Journal of Psychiatry 156, 13281335.
Dickerson, F, et al. (2007) C-reactive protein is associated with the severity of cognitive impairment but not of psychiatric symptoms in individuals with schizophrenia. Schizophrenia Research 93, 261265.
Ferreira, RC, et al. (2013) Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genetics 9, e1003444.
Fusar-Poli, P, et al. (2016) Diagnostic stability of ICD/DSM first episode psychosis diagnoses: meta-analysis. Schizophrenia Bulletin 42, 13951406.
Gale, SD, et al. (2016) Infectious disease burden and cognitive function in young to middle-aged adults. Brain, Behavior, and Immunity 52, 161168.
Gardner, RM, et al. (2013) Neonatal levels of acute phase proteins and later risk of non-affective psychosis. Macmillan Publishers Limited Translational Psychiatry 3, e228.
Goldsmith, DR, Rapaport, MH and Miller, BJ (2016) A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Molecular Psychiatry, epub ahead of print 21, 16961709.
Gorelick, PB (2010) Role of inflammation in cognitive impairment: results of observational epidemiological studies and clinical trials. Annals of the New York Academy of Sciences 1207, 155162.
Harrison, M (2015) Erythrocyte sedimentation rate and C-reactive protein. NPS MedicineWise Australian Prescriber 38, 9394.
Hwang, AE, et al. (2012) Evidence of genetic susceptibility to infectious mononucleosis: a twin study. Epidemiology and Infection 140, 20892095.
IL6R Genetics Consortium and Emerging Risk Factors Collaboration (2012) Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. The Lancet 379, 12051213.
Jones, P, et al. (1994) Child developmental risk factors for adult schizophrenia in the British 1946 birth cohort. The Lancet 344, 13981402.
Karlsson, H, et al. (2010) Association between erythrocyte sedimentation rate and IQ in Swedish males aged 18–20. Brain, Behavior, and Immunity 24, 868873.
Kendler, KS, et al. (2016 a) Observed cognitive performance and deviation from familial cognitive aptitude at Age 16 years and ages 18 to 20 years and risk for schizophrenia and bipolar illness in a Swedish national sample. JAMA Psychiatry 73, 465471.
Kendler, KS, et al. (2016 b) A Swedish national prospective and Co-relative study of school achievement at Age 16, and risk for schizophrenia, other nonaffective psychosis, and bipolar illness. Schizophrenia Bulletin 42, 7786.
Kendler, KS, et al. (2015) IQ and schizophrenia in a Swedish national sample: their causal relationship and the interaction of IQ with genetic risk. American Journal of Psychiatry 172, 259265.
Khandaker, GM, et al. (2011) A quantitative meta-analysis of population-based studies of premorbid intelligence and schizophrenia. Schizophrenia Research 132, 220227.
Khandaker, GM, et al. (2015 a) Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. . Elsevier The Lancet Psychiatry 2, 258270.
Khandaker, GM and Dantzer, R (2015) Is there a role for immune-to-brain communication in schizophrenia? Psychopharmacology 233, 15591573.
Khandaker, GM, Dantzer, R and Jones, PB (2017 a) Immunopsychiatry: important facts. Psychological Medicine 47, 22292237.
Khandaker, GM, et al. (2014) Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: a population-based longitudinal study. JAMA Psychiatry 71, 11211128.
Khandaker, GM, et al. (2015 b) A population-based prospective birth cohort study of childhood neurocognitive and psychological functioning in healthy survivors of early life meningitis. Annals of Epidemiology 25, 236242.
Khandaker, GM, et al. (2017 b). Association between a functional interleukin 6 receptor genetic variant and risk of depression and psychosis in a population-based birth cohort. Brain, Behavior, and Immunity 69, 264272.
Liu, XC, et al. (2014) Behavioral disturbances in adult mice following neonatal virus infection or kynurenine treatment–role of brain kynurenic acid. Brain, Behavior, and Immunity 36, 8089.
Luciano, M, et al. (2009) Reverse causation in the association between C-reactive protein and fibrinogen levels and cognitive abilities in an aging sample. Psychosomatic Medicine 71, 404409.
MacKinnon, DP, Krull, JL and Lockwood, CM (2000) Equivalence of the mediation, confounding and suppression effect. Prevention Science 1, 173.
MacKinnon, N, et al. (2017) Association between childhood infection, serum inflammatory markers and intelligence: findings from a population-based prospective birth cohort study. Epidemiology and Infection 146, 256264.
McAfoose, J and Baune, BT (2009) Evidence for a cytokine model of cognitive function. Neuroscience & Biobehavioral Reviews 33, 355366.
Metcalf, SA, et al. (2017) Serum C-reactive protein in adolescence and risk of schizophrenia in adulthood: a prospective birth cohort study. Brain, Behavior, and Immunity 59, 253259.
Miller, BJ, et al. (2011) Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biological Psychiatry 70, 663671.
Murray, RM and Lewis, SW (1987) Is schizophrenia a neurodevelopmental disorder? British Medical Journal (Clinical Research Ed.) 295, 681682.
Obel, N, et al. (2010) Genetic and environmental influences on risk of death due to infections assessed in Danish twins, 1943–2001. American Journal of Epidemiology 171, 10071013.
Potvin, S, et al. (2008) Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biological Psychiatry 63, 801808.
Reichenberg, A, et al. (2005) Elaboration on premorbid intellectual performance in schizophrenia: premorbid intellectual decline and risk for schizophrenia. Archives of General Psychiatry 62, 12971304.
Reichenberg, A, et al. (2001) Cytokine-associated emotional and cognitive disturbances in humans. Archives of General Psychiatry 58, 445452.
Spencer, SJ, Heida, JG and Pittman, QJ (2005) Early life immune challenge--effects on behavioural indices of adult rat fear and anxiety. Behavioural Brain Research 164, 231238.
Weinberger, DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry 44, 660669.
Wium-Andersen, MK, Orsted, DD and Nordestgaard, BG (2013) Elevated C-reactive protein associated With late- and very-late-onset schizophrenia in the general population: a prospective study. Schizophrenia Bulletin 40, 11171127.
World Health Organization (2004) International Statistical Classification of Diseases and Related Health Problems, vol. 1. Geneva, Switzerland: World Health Organization.
Zammit, S, et al. (2004) A longitudinal study of premorbid IQ score and risk of developing schizophrenia, bipolar disorder, severe depression, and other nonaffective psychoses. Archives of General Psychiatry 61, 354360.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Psychological Medicine
  • ISSN: 0033-2917
  • EISSN: 1469-8978
  • URL: /core/journals/psychological-medicine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Kappelmann et al. supplementary material
Kappelmann et al. supplementary material 1

 Word (177 KB)
177 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 26
Total number of PDF views: 124 *
Loading metrics...

Abstract views

Total abstract views: 340 *
Loading metrics...

* Views captured on Cambridge Core between 6th April 2018 - 16th August 2018. This data will be updated every 24 hours.