Hostname: page-component-7dd5485656-7jgsp Total loading time: 0 Render date: 2025-10-27T12:24:35.006Z Has data issue: false hasContentIssue false

On the Bayesian Nonparametric Generalization of IRT-Type Models

Published online by Cambridge University Press:  01 January 2025

Ernesto San Martín*
Affiliation:
Pontificia Universidad Católica de Chile
Alejandro Jara
Affiliation:
Pontificia Universidad Católica de Chile
Jean-Marie Rolin
Affiliation:
Université catholique de Louvain
Michel Mouchart
Affiliation:
Université catholique de Louvain
*
Requests for reprints should be sent to Ernesto San Martín, Department of Statistics & Measurement Center MIDE UC, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile. E-mail: esanmart@mat.puc.cl

Abstract

We study the identification and consistency of Bayesian semiparametric IRT-type models, where the uncertainty on the abilities’ distribution is modeled using a prior distribution on the space of probability measures. We show that for the semiparametric Rasch Poisson counts model, simple restrictions ensure the identification of a general distribution generating the abilities, even for a finite number of probes. For the semiparametric Rasch model, only a finite number of properties of the general abilities’ distribution can be identified by a finite number of items, which are completely characterized. The full identification of the semiparametric Rasch model can be only achieved when an infinite number of items is available. The results are illustrated using simulated data.

Information

Type
Original Paper
Copyright
Copyright © 2011 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The first author was partially supported by CEPPE CIEO-01-CONICYT grant and PUENTE grant 08/2009 from the Pontificia Universidad Católica de Chile. The second author is supported by FONDECYT 3095003 and 11100144 grants. The last two authors were partially supported by the Interuniversity Attraction Poles Program P6/03 from the Belgian State Federal Office for Scientific, Technical and Cultural Affairs.

References

Agresti, A., Caffo, B., Ohman-Strickland, P. (2004). Examples in which misspecification of a random effects distribution reduces efficiency. Computational Statistics and Data Analysis, 47, 639653.CrossRefGoogle Scholar
Antoniak, C.E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics, 2, 11521174.CrossRefGoogle Scholar
Bechger, T.M., Verhelst, N.D., Verstralen, H.H.F.M. (2001). Identifiability of nonlinear logistic test models. Psychometrika, 66, 357372.CrossRefGoogle Scholar
Borsboom, D., Mellenbergh, G.J., van Heerden, J. (2003). The theoretical status of latent variables. Psychological Review, 110, 203219.CrossRefGoogle ScholarPubMed
Burr, D., Doss, H. (2005). A Bayesian semiparametric model for random-effects meta-analysis. Journal of the American Statistical Association, 100, 242251.CrossRefGoogle Scholar
Bush, C.A., MacEachern, S.N. (1996). A semiparametric Bayesian model for randomised block designs. Biometrika, 83, 275285.CrossRefGoogle Scholar
Chandra, S. (1977). On the mixture of probability distributions. Scandinavian Journal of Statistics, 4, 105112.Google Scholar
Conway, J.B. (1985). A course in functional analysis, New York: Springer.CrossRefGoogle Scholar
De Boeck, P., Wilson, M. (2004). Explanatory item response models. a generalized linear and nonlinear approach, New York: Springer.CrossRefGoogle Scholar
De Leeuw, J., Verhelst, N. (1986). Maximum likelihood estimation in generalized Rasch models. Journal of Educational Statistics, 11, 183196.CrossRefGoogle Scholar
Doob, J.L. (1949). Applications of the theory of martingales. Colloques Internationaux du Centre National de le Recherche Scientifique, 13, 2327.Google Scholar
Duncan, K., MacEachern, S. (2008). Nonparametric Bayesian modeling for item response. Statistical Modelling, 8(1), 4166.CrossRefGoogle Scholar
Escobar, M.D., West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90, 577588.CrossRefGoogle Scholar
Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1, 209230.CrossRefGoogle Scholar
Ferguson, T.S. (1974). Prior distribution on the spaces of probability measures. The Annals of Statistics, 2, 615629.CrossRefGoogle Scholar
Florens, J.-P., Mouchart, M., Rolin, J.-M. (1990). Elements of Bayesian statistics, New York: Dekker.Google Scholar
Florens, J.-P., Rolin, J.-M. (1984). Asymptotic sufficiency and exact estimability. In Florens, J.-P., Mouchart, M., Raoult, J.-P., Simar, L. (Eds.), Alternative approaches to time series analysis (pp. 121142). Bruxelles: Publications des Facultés Universitaires Saint-Louis.Google Scholar
Geisser, S., Eddy, W. (1979). A predictive approach to model selection. Journal of the American Statistical Association, 74, 153160.CrossRefGoogle Scholar
Ghosh, M. (1995). Inconsistent maximum likelihood estimators for the Rasch model. Statistical and Probability Letters, 23, 165170.CrossRefGoogle Scholar
Hanson, T. (2006). Inference for mixtures of finite Polya tree models. Journal of the American Statistical Association, 101, 15481565.CrossRefGoogle Scholar
Hanson, T., Johnson, W.O. (2002). Modeling regression error with a mixture of Polya trees. Journal of the American Statistical Association, 97, 10201033.CrossRefGoogle Scholar
Ishwaran, H. (1998). Markov-chain Monte Carlo: some practical implications of theoretical results. Discussion. The Canadian Journal of Statistics, 26(1), 2027.CrossRefGoogle Scholar
Jansen, M.G.H., van Dujin, M.A.J. (1992). Extensions of Rasch’s multiplicative Poisson model. Psychometrika, 57, 405414.CrossRefGoogle Scholar
Jara, A. (2007). Applied Bayesian non- and semi-parametric inference using DPpackage. Rnews, 7(3), 1726.Google Scholar
Jara, A., Hanson, T., Lesaffre, E. (2009). Robustifying generalized linear mixed models using a new class of mixtures of multivariate Polya trees. Journal of Computational and Graphical Statistics, 18, 838860.CrossRefGoogle Scholar
Kadane, J. (1975). The role of identification in Bayesian theory. In Fienberg, S., Zellner, A. (Eds.), Studies in Bayesian econometrics and statistics (pp. 175191). Amsterdam: North-Holland.Google Scholar
Karabatsos, G., Walker, S. (2009). Coherent psychometric modelling with Bayesian nonparametrics. British Journal of Mathematical and Statistical Psychology, 62, 120.CrossRefGoogle ScholarPubMed
Kiefer, J., Wolfowitz, J. (1956). Consistency of the maximum likelihood estimators in the presence of infinitely many incidental parameters. The Annals of Mathematical Statistics, 27, 887906.CrossRefGoogle Scholar
Kleinman, K.P., Ibrahim, J.G. (1998). A semi-parametric Bayesian approach to generalized linear mixed models. Statistics in Medicine, 17, 25792596.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Kleinman, K.P., Ibrahim, J.G. (1998). A semiparametric Bayesian approach to the random effects models. Biometrics, 54, 921938.CrossRefGoogle Scholar
Lavine, M. (1992). Some aspects of Polya tree distributions for statistical modeling. The Annals of Statistics, 20, 12221235.CrossRefGoogle Scholar
Lavine, M. (1994). More aspects of Polya tree distributions for statistical modeling. The Annals of Statistics, 22, 11611176.CrossRefGoogle Scholar
Li, Y., Lin, X., Müller, P. (2009). Bayesian inference in semiparametric mixed models for longitudinal data. Biometrics, 66, 7078.CrossRefGoogle ScholarPubMed
Lindley, D.V. (1971). Bayesian statistics: a review, Montpelier: Society for Industrial and Applied Mathematics.Google Scholar
Lindsay, B.G., Clogg, C.C., Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model in item analysis. Journal of the American Statistical Association, 86, 96107.CrossRefGoogle Scholar
Maris, G., Bechger, T.M. (2004). Equivalent MIRID models. Psychometrika, 69, 627639.CrossRefGoogle Scholar
Miyazaki, K., Hoshino, T. (2009). A Bayesian semiparametric item response model with Dirichlet process priors. Psychometrika, 74, 375393.CrossRefGoogle Scholar
Mouchart, M., Rolin, J.M. (1984). A note on conditional independence with statistical applications. Statistica, 44, 557584.Google Scholar
Mouchart, M., San Martin, E. (2003). Specification and identification issues in models involving a latent hierarchical structure. Journal of Statistical Planning and Inference, 111, 143163.CrossRefGoogle Scholar
Mukhopadhyay, S., Gelfand, A.E. (1997). Dirichlet process mixed generalized linear models. Journal of the American Statistical Association, 92, 633647.CrossRefGoogle Scholar
Müller, P., Rosner, G.L. (1997). A Bayesian population model with hierarchical mixture priors applied to blood count data. Journal of the American Statistical Association, 92, 12791292.Google Scholar
Neyman, J., Scott, E. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16, 132.CrossRefGoogle Scholar
Pfanzagl, J. (1993). Incidental versus random nuisance parameters. The Annals of Statistics, 21, 16631691.CrossRefGoogle Scholar
Picci, G. (1977). Some connections between the theory of sufficient statistics and the identifiability problem. SIAM Journal on Applied Mathematics, 33, 383398.CrossRefGoogle Scholar
Rao, M.M. (1984). Probability theory with applications, New York: Academic Press.Google Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests, Copenhagen: The Danish Institute for Educational Research.Google Scholar
Revuelta, J. (2009). Identifiability and estimability of GLLIRM models. Psychometrika, 74, 257272.CrossRefGoogle Scholar
Revuelta, J. (2010). Estimating difficulty from polytomous categorial data. Psychometrika, 75, 331350.CrossRefGoogle Scholar
Roberts, G.O., Rosenthal, J. (1998). Markov-chain Monte Carlo: some practical implications of theoretical results. The Canadian Journal of Statistics, 26(1), 520.CrossRefGoogle Scholar
San Martín, E. (2000). Latent structural models: specification and identification problems. Belgium: Ph.D. Dissertation, Institute of Statistics, Université Catholique de Louvain.Google Scholar
San Martin, E., Del Pino, G., De Boeck, P. (2006). IRT models for ability-based guessing. Applied Psychological Measurement, 30, 183203.CrossRefGoogle Scholar
San Martín, E., Mouchart, M. (2007). On joint completeness: sampling and Bayesian versions, and their connections. Sankhyā, 69, 780807.Google Scholar
Teicher, H. (1961). Identifiability of mixtures. The Annals of Statistics, 32, 244248.CrossRefGoogle Scholar
Walker, S.G., Mallick, B.K. (1997). Hierarchical generalized linear models and frailty models with Bayesian nonparametric mixing. Journal of the Royal Statistical Society, Series B, 59, 845860.CrossRefGoogle Scholar
Wasserman, L. (1998). Asymptotic properties of nonparametric Bayesian procedures. In Dey, D., Müller, P., Sinha, D. (Eds.), Developments in statistical inference and data analysis (pp. 293304). New York: Springer.Google Scholar
Woods, C.M. (2006). Ramsay-curve item response theory (RC-IRT) to detect and correct for nonnormal latent variables. Psychological Methods, 11, 253270.CrossRefGoogle ScholarPubMed
Woods, C.M. (2008). Ramsay-curve item response theory for the three-parameter logistic item response model. Applied Psychological Measurement, 32, 447465.CrossRefGoogle Scholar
Woods, C.M., Thissen, D. (2006). Item response theory with estimation of the latent populational distribution using spline-based densities. Psychometrika, 71, 281301.CrossRefGoogle ScholarPubMed
Yang, M., Dunson, D.B. (2010). Bayesian semiparametric structural equation models with latent variables. Psychometrika, 75, 675693.CrossRefGoogle Scholar
Yang, M., Dunson, D.B. (2010). Semiparametric Bayes hierarchical models with mean and variance constraints. Computational Statistics and Data Analysis, 54, 21722186.CrossRefGoogle ScholarPubMed