Hostname: page-component-76c49bb84f-qtd2s Total loading time: 0 Render date: 2025-07-10T04:27:31.929Z Has data issue: false hasContentIssue false

Discrete Choice Models for Ordinal Response Variables: A Generalization of the Stereotype Model

Published online by Cambridge University Press:  01 January 2025

Timothy R. Johnson*
Affiliation:
University of Idaho
*
Requests for reprints should be sent to Timothy R. Johnson, Department of Statistics, University of Idaho, Moscow, ID 83844-1104, USA. E-mail: trjohns@uidaho.edu

Abstract

In this paper I present a class of discrete choice models for ordinal response variables based on a generalization of the stereotype model. The stereotype model can be derived and generalized as a random utility model for ordered alternatives. Random utility models can be specified to account for heteroscedastic and correlated utilities. In the case of the generalized stereotype model this includes category-specific random effects due to individual differences in response style. But unlike standard random utility models the generalized stereotype model is better suited for ordinal response variables and can be interpreted as a kind of unidimensional unfolding model. This paper discusses the specification, interpretation, identification, and estimation of generalized stereotype models. Two applications are provided for illustration.

Information

Type
Theory and Methods
Copyright
Copyright © 2007 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

This paper benefited significantly from the comments and suggestions of the editor, associate editor, and three anonymous reviewers. It is dedicated to my late colleague, peer, and friend Bradley D. Crouch.

References

Agresti, A. (1990). Categorical data analysis, New York: Wiley.Google Scholar
Alwin, D.F., Krosnick, J.A. (1985). The measurement of values in surveys: A comparison of ratings and rankings. Public Opinion Quarterly, 49, 535552.CrossRefGoogle Scholar
Anderson, J.A. (1984). Regression and ordered categorical variables (with discussion). Journal of the Royal Statistical Society. Series B, 46, 130.CrossRefGoogle Scholar
Baumgartner, H., Steenkamp, J.E.M. (2001). Response styles in marketing research: A cross-national investigation. Journal of Marketing Research, 38, 143156.CrossRefGoogle Scholar
Böckenholt, U. (2001). Thresholds and intransitivities in pairwise judgments: A multilevel analysis. Journal of Educational and Behavioral Statistics, 26, 269282.CrossRefGoogle Scholar
Böckenholt, U. (2001). Hierarchical modeling of paired comparison data. Psychological Methods, 6, 4966.CrossRefGoogle ScholarPubMed
Clogg, C.C., Shihadeh, E.S. (1994). Statistical models for ordinal variables, Sage: Thousand Oaks.Google Scholar
Cronbach, L.J. (1946). Response sets and test validity. Educational and Psychological Measurement, 6, 475494.CrossRefGoogle Scholar
Cronbach, L.J. (1950). Further evidence on response sets and test design. Educational and Psychological Measurement, 10, 331.CrossRefGoogle Scholar
De Boeck, P., Wilson, M. (2004). Explanatory item response models: A generalized linear and nonlinear approach, New York: Springer.CrossRefGoogle Scholar
Fielding, A., Yang, M., Goldstein, H. (2003). Multilevel ordinal models for examination grades. Statistical Modelling, 3, 127153.CrossRefGoogle Scholar
Genz, A. (1992). Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics, 1, 141150.CrossRefGoogle Scholar
Geweke, J. (1991). Efficient simulation from the multivariate normal and Student-t distributions subject to linear constraints and the evaluation of constraint probabilities. In Keramidas, E.M. (Eds.), Computer science and statistics: Proceedings of the twenty-third symposium on the interface (pp. 571578). Fairfax: International Foundation of North America.Google Scholar
Geweke, J., Keane, M., Runkle, D. (1994). Alternative computational approaches to inference in the multinomial probit model. Review of Economics and Statistics, 76, 609632.CrossRefGoogle Scholar
Geweke, J., Keane, M.P., Runkle, D.E. (1997). Statistical inference in the multinomial multiperiod probit model. Journal of Econometrics, 80, 125165.CrossRefGoogle Scholar
Greenland, S. (1994). Alternative models for ordinal logistic regression. Statistics in Medicine, 13, 16651677.CrossRefGoogle ScholarPubMed
Hajivassiliou, V., McFadden, D. (1998). The method of simulated scores for the estimation of LDV models. Econometrica, 66, 863896.CrossRefGoogle Scholar
Hajivassiliou, V., Ruud, P. (1994). Classical estimation methods for LDV models using simulation. In Engle, R., McFadden, D. (Eds.), Handbook of Econometrics (pp. 23832441). Amsterdam: North-Holland.CrossRefGoogle Scholar
Hamilton, D.L. (1968). Personality attributes associated with extreme response style. Psychological Bulletin, 69, 192203.CrossRefGoogle ScholarPubMed
Holtbrügge, W., Schuhmacher, M. (1991). A comparison of regression models for the analysis of ordered categorical data. Applied Statistics, 40, 249259.CrossRefGoogle Scholar
Johnson, T.R. (2003). On the use of heterogeneous thresholds ordinal regression models to account for individual differences in response style. Psychometrika, 68, 563583.CrossRefGoogle Scholar
Keane, M.P. (1992). A note on identification in the multinomial probit model. Journal of Business & Economic Statistics, 10, 193200.CrossRefGoogle Scholar
Laird, N.M., Ware, J.H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963974.CrossRefGoogle ScholarPubMed
Lenk, P., Wedel, M., Böckenholt, U. (2006). Bayesian estimation of circumplex models subject to prior theory constraints and scale-usage bias. Psychometrika, 71, 3355.CrossRefGoogle Scholar
Liu, I., Agresti, A. (2005). The analysis of ordered categorical data: An overview and a survey of recent developments. Test, 14, 173.CrossRefGoogle Scholar
Luce, R.D. (1959). Individual choice behavior, New York: Wiley.Google Scholar
McCulloch, R., Rossi, P.E. (1994). An exact likelihood analysis of the multinomial probit model. Journal of Econometrics, 64, 207240.CrossRefGoogle Scholar
McFadden, D. (1974). Conditional logit analysis of qualitative choice behaviour. In Zarembka, P. (Eds.), Frontiers in econometrics, New York: Academic Press.Google Scholar
McFadden, D. (1989). A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica, 57, 9951027.CrossRefGoogle Scholar
McFadden, D., Train, K. (2000). Mixed MNL models for discrete response. Journal of Applied Econometrics, 15, 447470.3.0.CO;2-1>CrossRefGoogle Scholar
Mellenbergh, G.J. (1995). Conceptual notes on models for discrete polytomous item responses. Applied Psychological Measurement, 19, 91100.CrossRefGoogle Scholar
Messick, S. (1991). Psychology and methodology of response styles. In Snow, R.E., Wiley, D.E. (Eds.), Improving inquiry in social science: A volume in honor of Lee J. Cronbach (pp. 161200). Hillsdale: Lawrence Erlbaum.Google Scholar
Natarajan, R., McCulloch, C.E., Kiefer, N.M. (2000). A Monte Carlo EM method for estimating multinomial probabilities. Computational Statistics & Data Analysis, 34, 3350.CrossRefGoogle Scholar
Rabe-Hesketh, S., Skrondal, A. (2001). Parametrization of multivariate random effects models for categorical data. Biometrics, 57, 12561264.CrossRefGoogle Scholar
Rabe-Hesketh, S., Skrondal, A., Pickles, A. (2004). Generalized multilevel structural equation modelling. Psychometrika, 69, 167190.CrossRefGoogle Scholar
Rijmen, F., Tuerlinckx, F., De Boeck, P., Kuppens, P. (2003). A nonlinear mixed model framework for item response theory. Psychological Methods, 8, 185205.CrossRefGoogle ScholarPubMed
Singelis, T.M., Triandis, H.C., Bhawuk, D.P.S., Gelfand, M.J. (1995). Horizontal and vertical dimensions of individualism and collectivism: A theoretical and measurement refinement. Cross-Cultural Research, 29, 240275.CrossRefGoogle Scholar
Skrondal, A., Rabe-Hesketh, S. (2003). Multilevel logistic regression for polytomous data and rankings. Psychometrika, 68, 267287.CrossRefGoogle Scholar
Takane, Y., Bozdogan, H., Shibayama, T. (1987). Ideal point discriminant analysis. Psychometrika, 52, 371392.CrossRefGoogle Scholar
Tanner, M. (1996). Tools for statistical inference: Methods for the exploration of posterior distributions and likelihood functions, (3rd ed.). New York: Springer.CrossRefGoogle Scholar
Triandis, H.C., Gelfand, M.J. (1998). Converging measurement of horizontal and vertical individualism and collectivism. Journal of Personality and Social Psychology, 74, 118128.CrossRefGoogle Scholar
Tsai, R.-C. (2003). Remarks on the identifiability of Thurstonian paired comparison models under multiple judgment. Psychometrika, 68, 361372.CrossRefGoogle Scholar
Tsai, R.-C., Böckenholt, U. (2001). Maximum likelihood estimation of factor and ideal point models for paired comparisons. Journal of Mathematical Psychology, 45, 795811.CrossRefGoogle Scholar
Tutz, G., Hennevogl, W. (1996). Random effects in ordinal regression models. Computational Statistics & Data Analysis, 22, 537557.CrossRefGoogle Scholar
Vansteelandt, K. (2000). Formal models for contextualized personality psychology. Unpublished doctoral dissertation, K.U. Leuven, BelgiumGoogle Scholar
Weeks, M. (1997). The multinomial probit model revisited: A discussion of parameter estimability. identification and specification testing, Journal of Economic Surveys, 11, 297320.Google Scholar
Wolfe, R., Firth, D. (2002). Modelling subjective use of an ordinal response scale in a many period crossover experiment. Journal of the Royal Statistical Society. Series C, 51, 245255.CrossRefGoogle Scholar