Hostname: page-component-76c49bb84f-zv2rg Total loading time: 0 Render date: 2025-07-05T13:18:03.741Z Has data issue: false hasContentIssue false

A Hierarchical Modeling Approach to Data Analysis and Study Design in a Multi-site Experimental fMRI Study

Published online by Cambridge University Press:  01 January 2025

Bo Zhou
Affiliation:
University of California, Irvine
Anna Konstorum
Affiliation:
University of California, Irvine
Thao Duong
Affiliation:
University of California, Irvine
Kinh H. Tieu
Affiliation:
Harvard Medical School
William M. Wells
Affiliation:
Harvard Medical School
Gregory G. Brown
Affiliation:
University of California, San Diego
Hal S. Stern
Affiliation:
University of California, Irvine
Babak Shahbaba*
Affiliation:
University of California, Irvine
*
Requests for reprints should be sent to Babak Shahbaba, University of California, Irvine, Irvine, USA. E-mail: babaks@uci.edu

Abstract

We propose a hierarchical Bayesian model for analyzing multi-site experimental fMRI studies. Our method takes the hierarchical structure of the data (subjects are nested within sites, and there are multiple observations per subject) into account and allows for modeling between-site variation. Using posterior predictive model checking and model selection based on the deviance information criterion (DIC), we show that our model provides a good fit to the observed data by sharing information across the sites. We also propose a simple approach for evaluating the efficacy of the multi-site experiment by comparing the results to those that would be expected in hypothetical single-site experiments with the same sample size.

Information

Type
Original Paper
Copyright
Copyright © 2012 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Bo Zhou and Kinh H. Tieu are co-first authors.

References

American Psychiatric Association (2000). Diagnostic and statistical manual of mental disorders, Washington, DC, USA. Google Scholar
DeYoe, E.A., Bandettini, P., Neitz, J., Miller, D., Winans, P. (1994). Functional magnetic resonance imaging (fMRI) of the human brain. Journal of Neuroscience Methods, 54, 171187CrossRefGoogle ScholarPubMed
Friedman, L., Glover, G.H., Krenz, D., Magnotta, V. (2006). Reducing inter-scanner variability of activation in a multicenter fMRI study: role of smoothness equalization. NeuroImage, 32, 16561668CrossRefGoogle Scholar
Friedman, L., Stern, H., Brown, G.G., Mathalon, D.H., Turner, J., Glover, G.H., Gollub, R.L., Lauriello, J., Lim, K.O., Cannon, T., Greve, D.N., Bockholt, H.J., Belger, A., Mueller, B., Doty, M.J., He, J., Wells, W., Smyth, P., Pieper, S., Kim, S., Kubicki, M., Vangel, M., Potkin, S.G. (2008). Test-retest and between-site reliability in a multicenter fMRI study. Human Brain Mapping, 29, 958972CrossRefGoogle Scholar
Gelman, A., Carlin, J., Stern, H., Rubin, D. (2003). Bayesian data analysis, (2nd ed.). London: Chapman & Hall/CRCCrossRefGoogle Scholar
Glahn, D.C., Laird, A.R., Ellison-Wright, I., Thelen, S.M., Robinson, J.L., Lancaster, J.L., Bullmore, E., Fox, P.T. (2008). Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. Biological Psychiatry, 64, 774781CrossRefGoogle ScholarPubMed
Goghari, V.M., Sponheim, S.R., MacDonald, A.W. III. (2010). The functional neuroanatomy of symptom dimensions in schizophrenia: a qualitative and quantitative review of a persistent question. Neuroscience and Biobehavioral Reviews, 34, 468486CrossRefGoogle ScholarPubMed
Lazar, N. (2008). The statistical analysis of functional MRI data, New York: SpringerGoogle Scholar
Lindquist, M.A. (2008). The statistical analysis of fMRI data. Statistical Science, 23(4), 439464CrossRefGoogle Scholar
Potkin, S.G., Turner, J.A., Brown, G.G., McCarthy, G., Greve, D.N., Glover, G.H., Manoach, D.S., Belger, A., Diaz, M., Wible, C.G., Ford, J.M., Mathalon, D.H., Gollub, R., Lauriello, J., O’Leary, D., van Erp, T.G.M., Toga, A.W., Preda, A., Lim, K.O. (2009). Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophrenia Bulletin, 35, 1931CrossRefGoogle ScholarPubMed
Robins, J.M., van der Vaart, A., Ventura, V. (2000). Asymptotic distribution of p values in composite null models. Journal of the American Statistical Association, 95, 11431156Google Scholar
Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl. 1), S208S219CrossRefGoogle ScholarPubMed
Spiegelhalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society. Series B, 64, 583639CrossRefGoogle Scholar
Sternberg, S. (1966). High-speed scanning in human memory. Science, 153, 652654CrossRefGoogle ScholarPubMed
Van Snellenberg, J.X. (2009). Working memory and long-term memory deficits in schizophrenia: is there a common substrate?. Psychiatry Research, 174, 8996CrossRefGoogle Scholar
Woolrich, M.W. (2012). Bayesian inference in FMRI. NeuroImage, 62(2), 801810CrossRefGoogle ScholarPubMed