Skip to main content

Calibration and Stokes Imaging with Full Embedded Element Primary Beam Model for the Murchison Widefield Array

  • M. Sokolowski (a1) (a2), T. Colegate (a1), A. T. Sutinjo (a1), D. Ung (a1), R. Wayth (a1) (a2), N. Hurley-Walker (a1), E. Lenc (a2) (a3), B. Pindor (a2) (a4), J. Morgan (a1), D. L. Kaplan (a5), M. E. Bell (a2) (a6), J. R. Callingham (a2) (a3) (a6), K. S. Dwarakanath (a7), Bi-Qing For (a8), B. M. Gaensler (a2) (a3) (a9), P. J. Hancock (a1) (a2), L. Hindson (a10), M. Johnston-Hollitt (a10) (a11), A. D. Kapińska (a2) (a8), B. McKinley (a2) (a4), A. R. Offringa (a12), P. Procopio (a2) (a4), L. Staveley-Smith (a2) (a8), C. Wu (a8) and Q. Zheng (a10) (a11)...

The Murchison Widefield Array (MWA), located in Western Australia, is one of the low-frequency precursors of the international Square Kilometre Array (SKA) project. In addition to pursuing its own ambitious science programme, it is also a testbed for wide range of future SKA activities ranging from hardware, software to data analysis. The key science programmes for the MWA and SKA require very high dynamic ranges, which challenges calibration and imaging systems. Correct calibration of the instrument and accurate measurements of source flux densities and polarisations require precise characterisation of the telescope’s primary beam. Recent results from the MWA GaLactic Extragalactic All-sky Murchison Widefield Array (GLEAM) survey show that the previously implemented Average Embedded Element (AEE) model still leaves residual polarisations errors of up to 10–20% in Stokes Q. We present a new simulation-based Full Embedded Element (FEE) model which is the most rigorous realisation yet of the MWA’s primary beam model. It enables efficient calculation of the MWA beam response in arbitrary directions without necessity of spatial interpolation. In the new model, every dipole in the MWA tile (4 × 4 bow-tie dipoles) is simulated separately, taking into account all mutual coupling, ground screen, and soil effects, and therefore accounts for the different properties of the individual dipoles within a tile. We have applied the FEE beam model to GLEAM observations at 200–231 MHz and used false Stokes parameter leakage as a metric to compare the models. We have determined that the FEE model reduced the magnitude and declination-dependent behaviour of false polarisation in Stokes Q and V while retaining low levels of false polarisation in Stokes U.

Corresponding author
13 Email:
Hide All
Asad K. M. B., et al. 2016, MNRAS, 462, 4482 10.1093/mnras/stw1863 2016MNRAS.462.4482A
DeBoer D. R., et al. 2017, PASP, 129, 045001 10.1088/1538-3873/129/974/045001 2017PASP. .129d5001D
FEKO 2014, FEKO User’s Manual (7th edn.; South Africa: EM Software & Systems S. A. [Pty] Ltd.)
Hamaker J. P., Bregman J. D., & Sault R. J. 1996, A&AS, 117, 137
Hancock P. J., Murphy T., Gaensler B. M., Hopkins A., & Curran J. R. 2012, Aegean: Compact source finding in radio images, Astrophysics Source Code Library (ascl: 1212.009)
Harrington R. F. 2001, Time-Harmonic Electromagnetic Fields (Hoboken: Wiley-Interscience)
Hurley-Walker N., et al. 2017, MNRAS, 464, 1146 10.1093/mnras/stw2337 2017MNRAS.464.1146H
Jacobs D. C., et al. 2016, ApJ, 825, 114 10.3847/0004-637X/825/2/114 2016ApJ. . .825. .114J
Kelley D. F., & Stutzman W. L. 1993, ITAP 10.1109/8.273305, 41, 1625
Lane W. M., Clarke T. E., Taylor G. B., Perley R. A., & Kassim N. E. 2004, AJ, 127, 48
Large M. I., Mills B. Y., Little A. G., Crawford D. F., & Sutton J. M. 1981, MNRAS, 194, 693 10.1093/mnras/194.3.693 1981MNRAS.194. .693L
Lenc E., et al. 2016, ApJ, 830, 38 10.3847/0004-637X/830/1/38 2016ApJ. . .830. . .38L
Lenc E., et al. 2017, PASA, 34, 40
McMullin J. P., Waters B., Schiebel D., Young W., & Golap K. 2007, in ASP Conf. Ser., Vol. 376, Astronomical Data Analysis Software and Systems XVI, eds. Shaw R. A., Hill F., & Bell D. J. (Tucson: ASP), 127
Mitchell D. A., Greenhill L. J., Wayth R. B., Sault R. J., Lonsdale C. J., Cappallo R. J., Morales M. F., & Ord S. M. 2008, ISTSP 10.1109/JSTSP.2008.2005327, 2, 707
Neben A. R., et al. 2016, ApJ, 820, 44 2016ApJ. . .820. . .44N
Offringa A. R., et al. 2014, MNRAS, 444, 606 10.1093/mnras/stu1368 2014MNRAS.444. .606O
Offringa A. R., et al. 2016, MNRAS 10.1093/mnras/stw310, 458, 1057
Ord S. M., et al. 2015, PASA, 32, e006 10.1017/pasa.2015.5 2015PASA. . .32. . . .6O
Smirnov O. M. 2011a, A&A, 527, A106
Smirnov O. M. 2011b, A&A, 527, A107
Sutinjo A., O’Sullivan J., Lenc E., Wayth R. B., Padhi S., Hall P., & Tingay S. J. 2015a, RaSc, 50, 52
Sutinjo A. T., et al. 2015b, ITAP, 63, 5433
Taylor G. B., Carilli C. L., & Perley R. A., eds. 1999, in ASP Conf. Ser., Vol. 180, Synthesis Imaging in Radio Astronomy II, eds. Taylor G. B., Carilli C. L., and Perley R. A. (San Francisco: ASP)
Thompson A. R., Moran J. M., & Swenson G. W. 2007, Interferometry and Synthesis in Radio Astronomy (New York: John Wiley & Sons)
Tingay S. J., et al. 2013, PASA, 30, 7
Wayth R. B., et al. 2015, PASA, 32, 25 10.1017/pasa.2015.26 2015PASA. . .32. . .25W
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Publications of the Astronomical Society of Australia
  • ISSN: 1323-3580
  • EISSN: 1448-6083
  • URL: /core/journals/publications-of-the-astronomical-society-of-australia
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 4
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 23 *
Loading metrics...

* Views captured on Cambridge Core between 27th November 2017 - 13th December 2017. This data will be updated every 24 hours.