Skip to main content

Discovering the Unexpected in Astronomical Survey Data

  • Ray P. Norris (a1) (a2)

Most major discoveries in astronomy are unplanned, and result from surveying the Universe in a new way, rather than by testing a hypothesis or conducting an investigation with planned outcomes. For example, of the ten greatest discoveries made by the Hubble Space Telescope, only one was listed in its key science goals. So a telescope that merely achieves its stated science goals is not achieving its potential scientific productivity.

Several next-generation astronomical survey telescopes are currently being designed and constructed that will significantly expand the volume of observational parameter space, and should in principle discover unexpected new phenomena and new types of object. However, the complexity of the telescopes and the large data volumes mean that these discoveries are unlikely to be found by chance. Therefore, it is necessary to plan explicitly for unexpected discoveries in the design and construction. Two types of discovery are recognised: unexpected objects and unexpected phenomena.

This paper argues that next-generation astronomical surveys require an explicit process for detecting the unexpected, and proposes an implementation of this process. This implementation addresses both types of discovery, and relies heavily on machine-learning techniques, and also on theory-based simulations that encapsulate our current understanding of the Universe.

Corresponding author
Hide All
Abbott, B. P., et al. 2016, PhRvL, 116, 061102
ATLAS Collaboration 2012, PhLB, 716, 1
Banfield, J. K., et al. 2016, MNRAS, 460, 2376
Baron, D., & Poznanski, D. 2017, MNRAS, 465, 4530
Bell-Burnell, J. 2009, in Proc. Sci., Accelerating the Rate of Astronomical Discovery (held in Rio de Janeiro, 11–14 August), 014
Bernyk, M., et al. 2016, ApJS, 223, 9
Butler-Yeoman, T., Frean, M., Hollitt, C. P., Hogg, D. W., & Johnston-Hollitt, M. 2017, in ASP. Conf. Ser., Proc. of ADASS XXV, eds. Lorente, N. P. F. & Shortridge, K. (San Francisco: ASP), in press
Collier, J. D., et al. 2014, MNRAS, 439, 545
Condon, J. J., et al. 1998, AJ, 115, 1693
Condon, J. J., et al. 2012, ApJ, 758, 23
Crawford, E., Norris, R. P., & Polsterer, K. 2016, arXiv:1611.02829
Dabbech, A., et al. 2015, Astr. Ap., 576, A7
Dewdney, P. E., Hall, P. J., Schilizzi, R. T., & Lazio, T. J. L. W. 2009, IEEEP, 97, 1482
Ekers, R. D. 2009, in Proc. Sci., Accelerating the Rate of Astronomical Discovery (held in Rio de Janeiro, 11–14 August), 007
Fabian, A. C. 2010, in Serendipity in Astronomy, eds. de Rond, M. & Morley, I. (Cambridge: Cambridge University Press), 2273
Fan, D., Budavári, T., Norris, R. P., & Hopkins, A. M. 2015, MNRAS, 451, 1299
Franzen, T. M. O., et al. 2015, MNRAS, 453, 4020
Gaensler, B. M., Landecker, T. L., Taylor, A. R., & POSSUM Collaboration 2010, BAAS, 42, 470.13
Garn, T., & Alexander, P. 2008, MNRAS, 391, 1000
Geach, J. E. 2012, MNRAS, 419, 2633
Hales, C. A., et al. 2014, MNRAS, 440, 3113
Handwerk, B., 2005, Hubble Space Telescope Turns 15 (Washington, DC: National Geographic Magazine)
Harwit, M. 1981, Cosmic Discovery (Cambridge, MA: MIT Press)
Harwit, M. 2003, PhT, 56, 38
Hertzprung, E. 1908, AN, 179, 373380.
Herzog, A., et al. 2014, Astr. Ap., 567, A104
Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A. 1968, Nature, 217, 709
Hollitt, C., & Johnston-Hollitt, M. 2012, PASA, 29, 309
Hopkins, A. M., et al. 2015, PASA, 32, e037
Hubble, E. 1929, PNAS, 15, 168
Johnston, S., et al. 2008, ExA, 22, 151
Kellermann, K. I., et al. 2009, in Proc. Sci., Accelerating the Rate of Astronomical,
Kuhn, T. S. 1962, The Structure of Scientific Revolutions (Chicago: The University of Chicago Press)
Lallo, M. D. 2012, OptEn, 51, 011011
Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J., & Crawford, F. 2007, Science, 318, 777
Macquart, J.-P., et al., PASA, 27, 272.
Mao, M. Y., et al. 2012, MNRAS, 426, 3334
Mauch, T., & Sadler, E. M. 2007, MNRAS, 375, 931
Middelberg, E., et al. 2008, AJ, 135, 1276
Murphy, T., et al. 2013, PASA, 30, e006
Norris, R. P. 1999, AcAau, 47, 731
Norris, R.P., et al. 2006, AJ, 132, 2409
Norris, R. P., et al. 2011, PASA, 28, 215
Norris, R. P., et al. 2013, PASA, 30, 20
Norris, R., et al. 2015, in Proc. Sci., Advancing Astrophysics with the Square Kilometre Array (held in Giardini Naxos, 9–13 June), 86
O’Brien, A. N., Tothill, N. F. H., Norris, R. P., & Filipović, M. D. 2015, Proc. Sci., EXTRA-RADSUR 2015 (held in Bologna, 20–23 October), 045
Padovani, P., Miller, N., Kellermann, K. I., Mainieri, V., Rosati, P., & Tozzi, P. 2011, ApJ, 740, 20
Perlmutter, S., et al. 1999, ApJ, 517, 565
Popper, K. 1959, The Logic of Scientific Discovery (New York: Basic Books)
Rees, G. A., et al. 2016, MNRAS, 455, 2731
Riess, A. G., et al., AJ, 116, 1009
Riggi, S., et al. 2016, MNRAS, 460, 1486
Springel, V., et al. 2005, Nature, 435, 629
Sutherland, W., & Saunders, W. 1992, MNRAS, 259, 413
van der Kruit, P. C. 1971, Astr. Ap., 15, 110
Wilkinson, P. 2007, in Proc. Sci., From Planets to Dark Energy: The Modern Radio Universe (held in Manchester, 1–5 October), 144
Wilkinson, P. 2015, in Proc. Sci., Advancing Astrophysics with the Square Kilometre Array (held in Giardini Naxos, 9–13 June), 65
Wilkinson, P. N., et al. 2004, NewAR, 48, 1551
Williams, R. E., et al. 1996, AJ, 112, 1335
Williams, R. E., et al. 2000, AJ, 120, 2735
Woit, P. 2011, Not Even Wrong: The Failure of String Theory and the Continuing Challenge to Unify the Laws of Physics (New York: Random House)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Publications of the Astronomical Society of Australia
  • ISSN: 1323-3580
  • EISSN: 1448-6083
  • URL: /core/journals/publications-of-the-astronomical-society-of-australia
Please enter your name
Please enter a valid email address
Who would you like to send this to? *