Skip to main content
×
Home
    • Aa
    • Aa

Discovering the Unexpected in Astronomical Survey Data

  • Ray P. Norris (a1) (a2)
Abstract
Abstract

Most major discoveries in astronomy are unplanned, and result from surveying the Universe in a new way, rather than by testing a hypothesis or conducting an investigation with planned outcomes. For example, of the ten greatest discoveries made by the Hubble Space Telescope, only one was listed in its key science goals. So a telescope that merely achieves its stated science goals is not achieving its potential scientific productivity.

Several next-generation astronomical survey telescopes are currently being designed and constructed that will significantly expand the volume of observational parameter space, and should in principle discover unexpected new phenomena and new types of object. However, the complexity of the telescopes and the large data volumes mean that these discoveries are unlikely to be found by chance. Therefore, it is necessary to plan explicitly for unexpected discoveries in the design and construction. Two types of discovery are recognised: unexpected objects and unexpected phenomena.

This paper argues that next-generation astronomical surveys require an explicit process for detecting the unexpected, and proposes an implementation of this process. This implementation addresses both types of discovery, and relies heavily on machine-learning techniques, and also on theory-based simulations that encapsulate our current understanding of the Universe.

Copyright
Corresponding author
Email: ray.norris@csiro.au
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J. K. Banfield , et al. 2016, MNRAS, 460, 2376

D. Baron , & D. Poznanski 2017, MNRAS, 465, 4530

M. Bernyk , et al. 2016, ApJS, 223, 9

J. D. Collier , et al. 2014, MNRAS, 439, 545

J. J. Condon , et al. 1998, AJ, 115, 1693

J. J. Condon , et al. 2012, ApJ, 758, 23

D. Fan , T. Budavári , R. P. Norris , & A. M. Hopkins 2015, MNRAS, 451, 1299

T. M. O. Franzen , et al. 2015, MNRAS, 453, 4020

T. Garn , & P. Alexander 2008, MNRAS, 391, 1000

J. E. Geach 2012, MNRAS, 419, 2633

C. A. Hales , et al. 2014, MNRAS, 440, 3113

A. Hewish , S. J. Bell , J. D. H. Pilkington , P. F. Scott , & R. A. Collins 1968, Nature, 217, 709

C. Hollitt , & M. Johnston-Hollitt 2012, PASA, 29, 309

A. M. Hopkins , et al. 2015, PASA, 32, e037

E. Hubble 1929, PNAS, 15, 168

D. R. Lorimer , M. Bailes , M. A. McLaughlin , D. J. Narkevic , & F. Crawford 2007, Science, 318, 777

J.-P. Macquart , et al., PASA, 27, 272.

M. Y. Mao , et al. 2012, MNRAS, 426, 3334

T. Mauch , & E. M. Sadler 2007, MNRAS, 375, 931

E. Middelberg , et al. 2008, AJ, 135, 1276

T. Murphy , et al. 2013, PASA, 30, e006

R.P. Norris , et al. 2006, AJ, 132, 2409

R. P. Norris , et al. 2011, PASA, 28, 215

R. P. Norris , et al. 2013, PASA, 30, 20

P. Padovani , N. Miller , K. I. Kellermann , V. Mainieri , P. Rosati , & P. Tozzi 2011, ApJ, 740, 20

S. Perlmutter , et al. 1999, ApJ, 517, 565

G. A. Rees , et al. 2016, MNRAS, 455, 2731

A. G. Riess , et al., AJ, 116, 1009

S. Riggi , et al. 2016, MNRAS, 460, 1486

V. Springel , et al. 2005, Nature, 435, 629

W. Sutherland , & W. Saunders 1992, MNRAS, 259, 413

P. N. Wilkinson , et al. 2004, NewAR, 48, 1551

R. E. Williams , et al. 1996, AJ, 112, 1335

R. E. Williams , et al. 2000, AJ, 120, 2735

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Publications of the Astronomical Society of Australia
  • ISSN: 1323-3580
  • EISSN: 1448-6083
  • URL: /core/journals/publications-of-the-astronomical-society-of-australia
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 46 *
Loading metrics...

Abstract views

Total abstract views: 178 *
Loading metrics...

* Views captured on Cambridge Core between 31st January 2017 - 21st September 2017. This data will be updated every 24 hours.