Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-27T16:03:19.605Z Has data issue: false hasContentIssue false

FLAIR II Spectroscopy of Two DENIS J Band Galaxy Samples

Published online by Cambridge University Press:  05 March 2013

Gary A. Mamon
Affiliation:
Institut d'Astrophysique de Paris, 98 bis Bd Arago, F–75014 Paris, France; gam@iap.fr DAEC, Observatoire de Paris, F–92195 Meudon, France
Quentin A. Parker
Affiliation:
Institute for Astronomy, Royal Observatory, Edinburgh, United Kingdom Anglo-Australian Observatory, Coonabarabran, NSW 2357, Australia
Dominique Proust
Affiliation:
DAEC, Observatoire de Paris, F–92195 Meudon, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As a pilot survey for the forthcoming 6dF Galaxy Redshift Survey, spectroscopy of galaxies selected in the 1.2 micron J waveband with the DENIS imaging survey was performed at the UKST using the FLAIR II multi-object spectroscope. Sixty-nine galaxy redshifts were obtained in a high galactic latitude field and an additional 12 redshifts in a low galactic latitude (b = 17˚), obscured field. This spectroscopic followup of NIR selected galaxies illustrates the feasibility of obtaining redshifts with optical spectra on galaxies selected at much longer wavelengths. It validated a very preliminary algorithm for star/galaxy separation for high galactic latitude DENIS objects, with 99% reliability for J <13.9. The FLAIR II redshifts are in excellent agreement with those, previously published, of 20 common galaxies. However, the FLAIR II redshift determinations presented here required substantially longer integration times to achieve 90% completeness than expected from previous optical surveys at comparable depth. This is mainly due to a degradation in overall fibre throughput due to known problems with ageing of the prism–cement–fibre interface with exposure to UV light. In comparison to our high galactic latitude field, our low latitude (high extinction) field required 2.5 times more exposure time for less than 50% of successful redshift measurements.

Among the J ≤ 13.9 galaxies with measured redshifts, only 376% display emission lines, in comparison with 60% of emission line galaxies in optical samples of comparable depth. These galaxies are, on average, half a magnitude bluer in B-J than galaxies of the same luminosity without emission lines. We confirm a previous optically-based result that the fraction of galaxies with emission lines increases rapidly with decreasing galaxy luminosity. The J band luminosity function is estimated. Our high latitude field displays a concentration of galaxies at cz ≲ 38 000 km s−1 suggesting a possible supercluster.A radial velocity is reported for a galaxy lying near the projected centre of the Abell 1434 cluster of galaxies, for which no cluster redshift is currently available.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2001

References

Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393 Google Scholar
Cole, S. et al. 2001, MNRAS, 326, 255 Google Scholar
Epchtein, N. et al. 1999, A&A, 349, 236 Google Scholar
Folkes, S. et al. 1999, MNRAS, 308, 459 Google Scholar
Héraudeau, P., Simien, F., & Mamon, G. A. 1996, A&AS, 117, 417 Google Scholar
Jarrett, T. H., Chester, T., Cutri, R., Schneider, S., Skrutskie, M., & Huchra, J. P. 2000a, AJ, 119, 2498 Google Scholar
Jarrett, T. H., Chester, T., Cutri, R., Schneider, S., Rosenberg, J., Huchra, J. P., & Mader, J. 2000b, AJ, 120, 298 Google Scholar
Kron, R. G. 1980, ApJS, 43, 305 Google Scholar
Kurtz, M. J., & Mink, D. J. 1998, PASP, 110, 934 Google Scholar
Lee, S. 1995, AAO internal report Loveday, J., Peterson, B. A., Efstathiou, G., & Maddox, S. J. 1992, ApJ, 390, 338 Google Scholar
Mamon, G. A. 1998, in Wide Field Surveys in Cosmology, ed. S. Colombi, Y. Mellier, & R. Raban (Paris: Frontières), 323 (astro-ph/9809376)Google Scholar
Mamon, G. A. 2000, in Cosmic Flows 1999: Towards an Under-standing of Large-Scale Structure, ed. S. Courteau, M. A. Strauss, & J. A. Willick (San Francisco: ASP [vol. 201]), 103 (astro-ph/9908163)Google Scholar
Mamon, G. A., Borsenberger, J., Tricottet, M., & Banchet, V. 1998, in The Impact of Near-Infrared Sky Surveys on Galactic and Extragalactic Astronomy, ed. N. Epchtein (Dordrecht: Kluwer), 177 (astro-ph/9712169)Google Scholar
Mannucci, F., Basile, F., Poggianti, B. M., Cimatti, A., Daddi, E., Pozzetti, L., & Vanzi, L. 2001, MNRAS, 326, 745 Google Scholar
Parker, Q. A. 1995, Spectrum, 7, 17 Google Scholar
Parker, Q. A., & Watson, F. G. 1995, in Wide Field Spectroscopy and the Distant Universe, ed. S. J. Maddox (Singapore: World Scientific), 33 Google Scholar
Parker, Q. A., Watson, F. G., & Miziarski, S. 1998, in Fiber-Optics in Astronomy III, ed. S. Arribas, E. Mediavilla, & F. Watson (San Francisco: ASP [vol. 152]), 80 Google Scholar
Poggianti, B. M. 1997, A&AS, 122, 399 Google Scholar
Ratcliffe, A., Shanks, T., Parker, Q. A., Broadbent, A., Watson, F. G., Oates, A. P., Collins, C. A., & Fong, R. 1998, MNRAS, 300, 417 Google Scholar
Sandage, A., Tammann, G. A., & Yahil, A. 1979, ApJ, 232, 352 Google Scholar
Schechter, P. 1976, ApJ, 203, 297 Google Scholar
Tonry, J., & Davis, M. 1979, AJ, 84, 1511 Google Scholar
Tresse, L., Maddox, S. J., Loveday, J., & Singleton, C. 1999, MNRAS, 310, 262 Google Scholar
Watson, F. G., Parker, Q. A., Bogatu, G., Farrell, T. J., Hingley, B. E. & Miziarski, S. 2000, SPIE, 4008, 123 Google Scholar
Willmer, C. N. A. 1997, AJ, 114, 898 CrossRefGoogle Scholar
Zaritsky, D., Rix, H.-W., & Rieke, M. 1993, Nature, 364, 313 Google Scholar