Skip to main content
×
×
Home

Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars

  • S. J. Smartt (a1)
Abstract
Abstract

Over the last 15 years, the supernova community has endeavoured to directly identify progenitor stars for core-collapse supernovae discovered in nearby galaxies. These precursors are often visible as resolved stars in high-resolution images from space-and ground-based telescopes. The discovery rate of progenitor stars is limited by the local supernova rate and the availability and depth of archive images of galaxies, with 18 detections of precursor objects and 27 upper limits. This review compiles these results (from 1999 to 2013) in a distance-limited sample and discusses the implications of the findings. The vast majority of the detections of progenitor stars are of type II-P, II-L, or IIb with one type Ib progenitor system detected and many more upper limits for progenitors of Ibc supernovae (14 in all). The data for these 45 supernovae progenitors illustrate a remarkable deficit of high-luminosity stars above an apparent limit of logL/L ≃ 5.1 dex. For a typical Salpeter initial mass function, one would expect to have found 13 high-luminosity and high-mass progenitors by now. There is, possibly, only one object in this time- and volume-limited sample that is unambiguously high-mass (the progenitor of SN2009ip) although the nature of that supernovae is still debated. The possible biases due to the influence of circumstellar dust, the luminosity analysis, and sample selection methods are reviewed. It does not appear likely that these can explain the missing high-mass progenitor stars. This review concludes that the community’s work to date shows that the observed populations of supernovae in the local Universe are not, on the whole, produced by high-mass (M ≳ 18 M) stars. Theoretical explosions of model stars also predict that black hole formation and failed supernovae tend to occur above an initial mass of M ≃ 18 M. The models also suggest there is no simple single mass division for neutron star or black-hole formation and that there are islands of explodability for stars in the 8–120 M range.The observational constraints are quite consistent with the bulk of stars above M ≳ 18 M collapsing to form black holes with no visible supernovae.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars
      Available formats
      ×
Copyright
Corresponding author
Email: s.smartt@qub.ac.uk
References
Hide All
Aldering G., Humphreys R. M., & Richmond M. 1994, AJ, 107, 662
Anderson J. P., Habergham S. M., James P. A., & Hamuy M. 2012, MNRAS, 424, 1372
Anderson J. P., & James P. A. 2008, MNRAS, 390, 1527
Benvenuto O. G., Bersten M. C., & Nomoto K. 2013, ApJ, 762, 74
Bersten M. C., et al. 2014, AJ, 148, 68
Bose S., et al. 2013, MNRAS, 433, 1871
Botticella M. T., et al. 2009, MNRAS, 398, 1041
Botticella M. T., Smartt S. J., Kennicutt R. C., Cappellaro E., Sereno M., & Lee J. C. 2012, A&A, 537, 132
Brown J. M., & Woosley S. E. 2013, ApJ, 769, 99
Cao Y., et al. 2013, ApJ, 775, L7
Chevalier R. A., & Fransson C. 2003, in Lecture Notes in Physics, Vol. 598, Supernovae and Gamma-Ray Bursters, ed. Weiler K. (Berlin: Springer-Verlag), 171
Chevalier R. A., Fransson C., & Nymark T. K. 2006, ApJ, 641, 1029
Crockett R. M., et al. 2008, MNRAS, 391, L5
Crockett R. M., Smartt S. J., Pastorello A., Eldridge J. J., Stephens A. W., Maund J. R., & Mattila S. 2011, MNRAS, 410, 2767
Crowther P. A. 2007, ARA&A, 45, 177
Crowther P. A. 2013, MNRAS, 428, 1927
Dall’Ora M., et al. 2014, ApJ, 787, 139
Davies B., et al. 2013, ApJ, 767, 3
Dessart L., Livne E., & Waldman R. 2010, MNRAS, 408, 827
Drout M. R., et al. 2011, ApJ, 741, 97
Dwarkadas V. V. 2014, MNRAS, 440, 1917
Dwarkadas V. V., & Gruszko J. 2012, MNRAS, 419, 1515
Eldridge J. J., Fraser M., Maund J. R., & Smartt S. J. 2015, MNRAS, 446, 2689
Eldridge J. J., Fraser M., Smartt S. J., Maund J. R., & Crockett R. M. 2013, MNRAS, 436, 774
Eldridge J. J., Izzard R. G., & Tout C. A. 2008, MNRAS, 384, 1109
Eldridge J. J., Mattila S., & Smartt S. J. 2007, MNRAS, 376, L52
Eldridge J. J., & Tout C. A. 2004, MNRAS, 353, 87
Elias-Rosa N., et al. 2013, MNRAS, 436, L109
Elias-Rosa N., et al. 2010, ApJ, 714, L254
Elias-Rosa N., et al. 2009, ApJ, 706, 1174
Elias-Rosa N., et al. 2011, ApJ, 742, 6
Eriksen K. A., Arnett D., McCarthy D. W., & Young P. 2009, ApJ, 697, 29
Filippenko A. V. 1997, ARA&A, 35, 309
Filippenko A. V., Matheson T., & Ho L. C. 1993, ApJ, 415, L103
Folatelli G., et al. 2014, ApJ, 793, L22
Foley R. J., Berger E., Fox O., Levesque E. M., Challis P. J., Ivans I. I., Rhoads J. E., & Soderberg A. M. 2011, ApJ, 732, 32
Fox O. D., et al. 2014, ApJ, 790, 17
Fraser M. 2011, PhD thesis, Queen’s University of Belfast
Fraser M., et al. 2011, MNRAS, 417, 1417
Fraser M., et al. 2013a, MNRAS, 433, 1312
Fraser M., et al. 2013b, ApJ, 779, L8
Fraser M., et al. 2012, ApJ, 759, L13
Fraser M., et al. 2014, MNRAS, 439, L56
Fraser M., et al. 2010, ApJ, 714, L280
Fremling C., et al. 2014, A&A, 565, 114
Fryer C. L. 1999, ApJ, 522, 413
Gal-Yam A., et al. 2014, Nature, 509, 471
Gal-Yam A., & Leonard D. C. 2009, Nature, 458, 865
Gal-Yam A., et al. 2007, ApJ, 656, 372
Gerke J. R., Kochanek C. S., & Stanek K. Z. 2015, MNRAS, in press, arxiv: 1411.1761
Graham M. L., et al. 2014, ApJ, 787, 163
Graur O., & Maoz D. 2012, Astron. Telegram, 4535, 1
Groh J. H. 2014, A&A, 572, 11
Groh J. H., Georgy C., & Ekström S. 2013a, A&A, 558, L1
Groh J. H., Meynet G., & Ekström S. 2013b, A&A, 550, L7
Groh J. H., Meynet G., Georgy C., & Ekström S. 2013c, A&A, 558, 131
Hendry M. A., et al. 2006, MNRAS, 369, 1303
Hirschi R., Meynet G., & Maeder A. 2004, A&A, 425, 649
Horiuchi S., Beacom J. F., Kochanek C. S., Prieto J. L., Stanek K. Z., & Thompson T. A. 2011, ApJ, 738, 154
Horiuchi S., Nakamura K., Takiwaki T., Kotake K., & Tanaka M. 2014, MNRAS, 445, L99
Hwang U., & Laming J. M. 2009, ApJ, 703, 883
Hwang U., & Laming J. M. 2012, ApJ, 746, 130
Ivezic Z., & Elitzur M. 1997, MNRAS, 287, 799
Jennings Z. G., Williams B. F., Murphy J. W., Dalcanton J. J., Gilbert K. M., Dolphin A. E., Weisz D. R., & Fouesneau M. 2014, ApJ, 795, 170
Jerkstrand A. 2011, PhD thesis, University of Stockholm
Jerkstrand A., Ergon M., Smartt S. J., Fransson C., Sollerman J., Taubenberger S., Bersten M., & Spyromilio J. 2015, A&A, 573, 12
Jerkstrand A., Fransson C., & Kozma C. 2011, A&A, 530, 45
Jerkstrand A., Fransson C., Maguire K., Smartt S., Ergon M., & Spyromilio J. 2012, A&A, 546, 28
Jerkstrand A., Smartt S. J., Fraser M., Fransson C., Sollerman J., Taddia F., & Kotak R. 2014, MNRAS, 439, 3694
Kennicutt R. C. Jr, et al. 2003, PASP, 115, 928
Kochanek C. S. 2014, ApJ, 785, 28
Kochanek C. S., Beacom J. F., Kistler M. D., Prieto J. L., Stanek K. Z., Thompson T. A., & Yüksel H. 2008, ApJ, 684, 1336
Kochanek C. S., Khan R., & Dai X. 2012, ApJ, 759, 20
Kotak R., & Vink J. S. 2006, A&A, 460, L5
Kozma C., & Fransson C. 1998, ApJ, 497, 431
Krause O., Tanaka M., Usuda T., Hattori T., Goto M., Birkmann S., & Nomoto K. 2008, Nature, 456, 617
Kudritzki R.-P., & Puls J. 2000, ARA&A, 38, 613
Langer N. 2012, ARA&A, 50, 107
Leaman J., Li W., Chornock R., & Filippenko A. V. 2011, MNRAS, 412, 1419
Levesque E. M., Massey P., Olsen K. A. G., Plez B., Meynet G., & Maeder A. 2006, ApJ, 645, 1102
Levesque E. M., Massey P., Plez B., & Olsen K. A. G. 2009, AJ, 137, 4744
Li W., Cenko S. B., & Filippenko A. V. 2009, CBET, 1656, 1
Li W., et al. 2011, MNRAS, 412, 1441
Li W., Van Dyk S. D., Filippenko A. V., & Cuillandre J.-C. 2005, PASP, 117, 121
Li W., Van Dyk S. D., Filippenko A. V., Cuillandre J.-C., Jha S., Bloom J. S., Riess A. G., & Livio M. 2006, ApJ, 641, 1060
Li W., Wang X., Van Dyk S. D., Cuillandre J.-C., Foley R. J., & Filippenko A. V. 2007, ApJ, 661, 1013
Lovegrove E., & Woosley S. E. 2013, ApJ, 769, 109
Lyman J., Bersier D., James P., Mazzali P., Eldridge J., Fraser M., & Pian E. 2014, MNRAS, submitted, arXiv: 1406.3667
Mackey J., Mohamed S., Gvaramadze V. V., Kotak R., Langer N., Meyer D. M.-A., Moriya T. J., & Neilson H. R. 2014, Nature, 512, 282
Maguire K., et al. 2012, MNRAS, 420, 3451
Maíz-Apellániz J., Bond H. E., Siegel M. H., Lipkin Y., Maoz D., Ofek E. O., & Poznanski D. 2004, ApJ, 615, L113
Margutti R., et al. 2014, ApJ, 780, 21
Massey P., Lang C. C., Degioia-Eastwood K., & Garmany C. D. 1995, ApJ, 438, 188
Matheson T., Filippenko A. V., Ho L. C., Barth A. J., & Leonard D. C. 2000, AJ, 120, 1499
Mattila S., et al. 2012, ApJ, 756, 111
Mattila S., Fraser M., Smartt S. J., Meikle W. P. S., Romero-Cañizales C., Crockett R. M., & Stephens A. 2013, MNRAS, 431, 2050
Mattila S., Smartt S., Maund J., Benetti S., & Ergon M. 2010, arXiv: 1011.5494
Mattila S., Smartt S. J., Eldridge J. J., Maund J. R., Crockett R. M., & Danziger I. J. 2008, ApJ, 688, L91
Mauerhan J. C., et al. 2013, MNRAS, 430, 1801
Maund J. R., et al. 2011, ApJ, 739, L37
Maund J. R., et al. 2013, MNRAS, 431, L102
Maund J. R., Mattila S., Ramirez-Ruiz E., & Eldridge J. J. 2014a, MNRAS, 438, 1577
Maund J. R., Reilly E., & Mattila S. 2014b, MNRAS, 438, 938
Maund J. R., & Smartt S. J. 2005, MNRAS, 360, 288
Maund J. R., & Smartt S. J. 2009, Science, 324, 486
Maund J. R., Smartt S. J., & Danziger I. J. 2005, MNRAS, 364, L33
Maund J. R., Smartt S. J., Kudritzki R. P., Podsiadlowski P., & Gilmore G. F. 2004, Nature, 427, 129
Mauron N., & Josselin E. 2011, A&A, 526, 156
Maza J., et al. 2009, CBET, 1928, 1
Mazzali P. A., Maurer I., Valenti S., Kotak R., & Hunter D. 2010, MNRAS, 408, 87
Milisavljevic D., & Fesen R. A. 2015, Science, 347, 526
Nakano S., & Itagaki K. 2004, CBET, 74, 1
Nomoto K., Suzuki T., Shigeyama T., Kumagai S., Yamaoka H., & Saio H. 1993, Nature, 364, 507
Nomoto K. I., Iwamoto K., & Suzuki T. 1995, PhR, 256, 173
O’Connor E., & Ott C. D. 2011, ApJ, 730, 70
Ofek E. O., et al. 2014, ApJ, 789, 104
Paczyński B. 1967, AcA, 17, 355
Pastorello A., et al. 2013, ApJ, 767, 1
Pastorello A., et al. 2007, Nature, 447, 829
Patnaude D. J., & Fesen R. A. 2009, ApJ, 697, 535
Piro A. L. 2013, ApJ, 768, L14
Podsiadlowski P., Hsu J. J. L., Joss P. C., & Ross R. R. 1993, Nature, 364, 509
Podsiadlowski P., Joss P. C., & Hsu J. J. L. 1992, ApJ, 391, 246
Poznanski D. 2013, MNRAS, 436, 3224
Poznanski D., Ganeshalingam M., Silverman J. M., & Filippenko A. V. 2011, MNRAS, 415, L81
Poznanski D., Prochaska J. X., & Bloom J. S. 2012, MNRAS, 426, 1465
Prieto J. L., Brimacombe J., Drake A. J., & Howerton S. 2013, ApJ, 763, L27
Prieto J. L., et al. 2008, ApJ, 681, L9
Pumo M. L., & Zampieri L. 2011, ApJ, 741, 41
Rest A., et al. 2008, ApJ, 681, L81
Sana H., et al. 2012, Science, 337, 444
Shiode J. H., & Quataert E. 2014, ApJ, 780, 96
Shivvers I., Mauerhan J. C., Leonard D. C., Filippenko A. V., & Fox O. D. 2014, arXiv: 1408.1404
Singer D., Pugh H., & Li W. 2004, IAUC, 8297, 2
Smartt S. J. 2009, ARA&A, 47, 63
Smartt S. J., Eldridge J. J., Crockett R. M., & Maund J. R. 2009, MNRAS, 395, 1409
Smartt S. J., Gilmore G. F., Tout C. A., & Hodgkin S. T. 2002, ApJ, 565, 1089
Smartt S. J., Gilmore G. F., Trentham N., Tout C. A., & Frayn C. M. 2001, ApJ, 556, L29
Smartt S. J., Maund J. R., Gilmore G. F., Tout C. A., Kilkenny D., & Benetti S. 2003, MNRAS, 343, 735
Smartt S. J., Maund J. R., Hendry M. A., Tout C. A., Gilmore G. F., Mattila S., & Benn C. R. 2004, Science, 303, 499
Smith N., & Arnett W. D. 2014, ApJ, 785, 82
Smith N., Li W., Filippenko A. V., & Chornock R. 2011a, MNRAS, 412, 1522
Smith N., et al. 2011b, ApJ, 732, 63
Smith N., et al. 2015, MNRAS, 449, 1876
Smith N., Mauerhan J. C., & Prieto J. L. 2014, MNRAS, 438, 1191
Smith N., et al. 2010, AJ, 139, 1451
Smith N., & Owocki S. P. 2006, ApJ, 645, L45
Soderberg A. M., et al. 2012, ApJ, 752, 78
Spiro S., et al. 2014, MNRAS, 439, 2873
Sukhbold T., & Woosley S. E. 2014, ApJ, 783, 10
Szczygieł D. M., Gerke J. R., Kochanek C. S., & Stanek K. Z. 2012, ApJ, 747, 23
Takáts K., et al. 2014, MNRAS, 438, 368
Takáts K., et al. MNRAS, 2015, in press, arXiv: 1504.02404
Tomasella L., et al. 2013, MNRAS, 434, 1636
Trundle C., Kotak R., Vink J. S., & Meikle W. P. S. 2008, A&A, 483, L47
Ugliano M., Janka H.-T., Marek A., & Arcones A. 2012, ApJ, 757, 69
Utrobin V. P., & Chugai N. N. 2008, A&A, 491, 507
Utrobin V. P., & Chugai N. N. 2009, A&A, 506, 829
Valenti S., et al. 2008, MNRAS, 383, 1485
Vanbeveren D., De Loore C., & Van Rensbergen W. 1998, A&ARv, 9, 63
Van Dyk S. D., et al. 2012a, ApJ, 756, 131
Van Dyk S. D., et al. 2012b, AJ, 143, 19
Van Dyk S. D., Garnavich P. M., Filippenko A. V., Höflich P., Kirshner R. P., Kurucz R. L., & Challis P. 2002, PASP, 114, 1322
Van Dyk S. D., et al. 2011, ApJ, 741, L28
Van Dyk S. D., Li W., & Filippenko A. V. 2003a, PASP, 115, 1
Van Dyk S. D., Li W., & Filippenko A. V. 2003b, PASP, 115, 1289
Van Dyk S. D., Peng C. Y., Barth A. J., & Filippenko A. V. 1999, AJ, 118, 2331
Van Dyk S. D., et al. 2013, ApJ, 772, L32
Van Dyk S. D., et al. 2014, AJ, 147, 37
Vink J. S., & de Koter A. 2005, A&A, 442, 587
Walmswell J. J., & Eldridge J. J. 2012, MNRAS, 419, 2054
Williams B. F., Peterson S., Murphy J., Gilbert K., Dalcanton J. J., Dolphin A. E., & Jennings Z. G. 2014, ApJ, 791, 105
Woosley S. E., Eastman R. G., Weaver T. A., & Pinto P. A. 1994, ApJ, 429, 300
Woosley S. E., & Heger A. 2007, PhR, 442, 269
Yoon S.-C., Gräfener G., Vink J. S., Kozyreva A., & Izzard R. G. 2012, A&A, 544, L11
Yoon S.-C., & Langer N. 2005, A&A, 443, 643
Yoon S.-C., Woosley S. E., & Langer N. 2010, ApJ, 725, 940
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Publications of the Astronomical Society of Australia
  • ISSN: 1323-3580
  • EISSN: 1448-6083
  • URL: /core/journals/publications-of-the-astronomical-society-of-australia
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 30
Total number of PDF views: 359 *
Loading metrics...

Abstract views

Total abstract views: 509 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st January 2018. This data will be updated every 24 hours.