Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-15T01:47:31.627Z Has data issue: false hasContentIssue false

Plane polarisation in Comptonization process: A Monte Carlo study

Published online by Cambridge University Press:  29 January 2024

Nagendra Kumar*
Affiliation:
No. 1006, Santosh M’house, 9th Cross, Divanarapalya, Gokul Post, Bangalore, 560054, India Department of Physics, Indian Institute of Science, Bangalore, India

Abstract

High energies emissions observed in X-ray binaries (XRBs), active galactic nuclei (AGNs) are linearly polarised. The prominent mechanism for X-ray is the Comptonization process. We revisit the theory for polarisation in Compton scattering with unpolarised electrons and note that the ($k \times k^{\prime}$)-coordinate (in which, ($k \times k^{\prime}$) acts as a z-axis, here k and k are incident and scattered photon momentum, respectively) is more convenient to describe it. Interestingly, for a fixed scattering plane the degree of polarisation PD after single scattering for randomly oriented low-energy unpolarised incident photons is $\sim$0.33. At the scattering angle $\theta$ = 0 or $\theta \equiv$ [0,25$^{\circ}$], the modulation curve of k exhibits the same PD and PA (angle of polarisation) of k, and even the distribution of projection of electric vector of k ($k^{\prime}_{e}$) on perpendicular plane to the k indicates same (so, an essential criteria for detector designing). We compute the polarisation state in Comptonization process using Monte Carlo methods with considering a simple spherical corona. We obtain the PD of emergent photons as a function of $\theta$-angle (or alternatively, the disc inclination angle i) on a meridian plane (i.e. the laws of darkening, formulated by Chandrasekhar (1946, ApJ, 103, 351) after single scattering with unpolarised incident photons. To explore the energy dependency we consider a general spectral parameter set corresponding to hard and soft states of XRBs, we find that for average scattering no. $\langle N_{sc}\rangle$ $\sim$1.1 the PD is independent of energy and PA $\sim 90^{\circ}$ ($k^{\prime}_{e}$ is parallel to the disc plane), and for $\langle N_{sc}\rangle$ $\sim$5 the PD value is maximum for $i=45^{\circ}$. We also compare the results qualitatively with observation of IXPE for five sources.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhiezerr, A., & Berestetskil, V. 1965, Quantum Electrodynamics (Interscience Publishers) (Translated by Volkoff, G. M.)Google Scholar
Beheshtipour, B., Krawczynski, H., & Malzac, J. 2017, ApJ, 850, 14 Google Scholar
Bonometto, S., Cazzola, P., & Saggion, A. 1970, A&A, 7, 292 Google Scholar
Bucciantini, N., et al. 2023, NatAs, 7, 602 Google Scholar
Chand, V., Chattopadhyay, T., Oganesyan, G., Rao, A. R., Vadawale, S. V., Bhattacharya, D., Bhalerao, V. B., & Misra, K. 2019, ApJ, 874, 70 Google Scholar
Chandrasekhar, S. 1946, ApJ, 103, 351 Google Scholar
Chandrasekhar, S. 1960, Radiative transferGoogle Scholar
Chatterjee, R., Agrawal, V. K., Jayasurya, K. M., & Katoch, T. 2023, MNRAS, 521, L74 Google Scholar
Chattopadhyay, T. 2021, JAA, 42, 106 Google Scholar
Chattopadhyay, T., Vadawale, S. V., Rao, A. R., Sreekumar, S., & Bhattacharya, D. 2014, ExA, 37, 555 Google Scholar
Chattopadhyay, T., et al. 2019, ApJ, 884, 123 Google Scholar
Chauvin, M., et al. 2018, NatAs, 2, 652 Google Scholar
Dolan, J. F. 1967, SSR, 6, 579 Google Scholar
Done, C., Gierliński, M., & Kubota, A. 2007, A&AR, 15, 1 Google Scholar
Doroshenko, V., et al. 2022, NatAs, 6, 1433 Google Scholar
Dovčiak, M., Muleri, F., Goosmann, R. W., Karas, V., & Matt, G. 2011, ApJ, 731, 75 Google Scholar
Fabiani, S. 2018, Galaxies, 6, 54 Google Scholar
Farinelli, R., et al. 2023, MNRAS, 519, 3681 Google Scholar
Feng, H., et al. 2020, NatAs, 4, 511 Google Scholar
Forot, M., Laurent, P., Grenier, I. A., Gouiffès, C., & Lebrun, F. 2008, ApJ, 688, L29 CrossRefGoogle Scholar
Götz, D., Laurent, P., Antier, S., Covino, S., D’Avanzo, P., D’Elia, V., & Melandri, A. 2014, MNRAS, 444, 2776 Google Scholar
Hitomi Collaboration, et al. 2018, PASJ, 70, 113 Google Scholar
Hua, X.-M., & Titarchuk, L. 1995, ApJ, 449, 188 CrossRefGoogle Scholar
Jayasurya, K. M., Agrawal, V. K., & Chatterjee, R. 2023, arXiv e-prints, p. arXiv:2302.03396 Google Scholar
Jourdain, E., & Roques, J. P. 2019, ApJ, 882, 129 Google Scholar
Jourdain, E., Roques, J. P., Chauvin, M., & Clark, D. J. 2012, ApJ, 761, 27 Google Scholar
Krawczynski, H. 2012, ApJ, 744, 30 CrossRefGoogle Scholar
Krawczynski, H., et al. 2019, arXiv e-prints, p. arXiv:1904.09313 Google Scholar
Krawczynski, H., et al. 2022, Sci, 378, 650 Google Scholar
Kumar, N. 2017, arXiv e-prints, p. arXiv:1708.04427 Google Scholar
Kumar, N., & Kushwaha, P. 2021, arXiv e-prints, p. arXiv:2106.06263 Google Scholar
Kumar, N., & Misra, R. 2014, MNRAS, 445, 2818 Google Scholar
Kumar, N., & Misra, R. 2016a, MNRAS, 461, 2580 Google Scholar
Kumar, N., & Misra, R. 2016b, MNRAS, 461, 4146 Google Scholar
Kumar, N., & Mukhopadhyay, B. 2021, arXiv e-prints, p. arXiv:2106.06267 Google Scholar
Kushwaha, A., Jayasurya, K. M., Agrawal, V. K., & Nandi, A. 2023, MNRAS, 524, L15 CrossRefGoogle Scholar
Landau, L., & Lifshitz, E. 1987, The Classical Theory of Fields (Fourth Revised English Edition; Butterworth-Heinemann)Google Scholar
Laurent, P., Rodriguez, J., Wilms, J., Cadolle Bel, M., Pottschmidt, K., & Grinberg, V. 2011, Sci, 332, 438 Google Scholar
Lei, F., Dean, A. J., & Hills, G. L. 1997, SSR, 82, 309 CrossRefGoogle Scholar
Li, L.-X., Narayan, R., & McClintock, J. E. 2009, ApJ, 691, 847 Google Scholar
Lin, D., Remillard, R. A., & Homan, J. 2007, ApJ, 667, 1073 Google Scholar
Long, X., et al. 2022, ApJ, 924, L13 Google Scholar
Marinucci, A., et al. 2022, MNRAS, 516, 5907 Google Scholar
Marshall, H. L., et al. 2022, ApJ, 940, 70 Google Scholar
Matt, G., Feroci, M., Rapisarda, M., & Costa, E. 1996, Radiation Physics and Chemistry, 48, 403 Google Scholar
McClintock, J. E., & Remillard, R. A. 2006, in Vol. 39, Compact Stellar X-ray Sources, 157, doi: 10.48550/arXiv.astro-ph/0306213 CrossRefGoogle Scholar
McGlynn, S., et al. 2007, A&A, 466, 895 CrossRefGoogle Scholar
McMaster, W. H. 1961, RvMP, 33, 8 CrossRefGoogle Scholar
Pal, I., Stalin, C. S., Chatterjee, R., & Agrawal, V. K. 2023, arXiv e-prints, p. arXiv:2305.09365 Google Scholar
Paul, B., Gopala Krishna, M. R., & Puthiya Veetil, R. 2016, in 41st COSPAR Scientific Assembly, E1.15–8–16 Google Scholar
Ratheesh, A., et al. 2023, arXiv e-prints, p. arXiv:2304.12752 Google Scholar
Rawat, D., Garg, A., & Méndez, M. 2023, ApJ, 949, L43 Google Scholar
Schnittman, J. D., & Krolik, J. H. 2010, ApJ, 712, 908 CrossRefGoogle Scholar
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 500, 33 Google Scholar
Sharmam, V., Iyyani, S., Bhattacharya, D., Chattopadhyay, T., Vadawale, S. V., & Bhalerao, V. B. 2020, MNRAS, 493, 5218 CrossRefGoogle Scholar
Tamborra, F., Matt, G., Bianchi, S., & Dovčiak, M. 2018, A&A, 619, A105 CrossRefGoogle Scholar
Tolhoek, H. A., 1956, RvMP, 28, 277 CrossRefGoogle Scholar
Vadawale, S. V., et al. 2018, NatAs, 2, 50 Google Scholar
Weisskopf, M. 2018, Galaxies, 6, 33 Google Scholar
Weisskopf, M. C., Silver, E. H., Kestenbaum, H. L., Long, K. S., & Novick, R. 1978, ApJ, 220, L117 CrossRefGoogle Scholar
Weisskopf, M. C., et al. 2022, JATIS, 8, 026002 Google Scholar
Zhang, S.-N., et al. 2019, NatAs, 3, 258 Google Scholar