Skip to main content
×
Home
    • Aa
    • Aa

Quantifying Resolving Power in Astronomical Spectra

  • J. Gordon Robertson (a1) (a2)
Abstract
Abstract

The spectral resolving power R = λ/δλ is a key property of any spectrograph, but its definition is vague because the ‘smallest resolvable wavelength difference’ δλ does not have a consistent definition. Often, the FWHM is used, but this is not consistent when comparing the resolution of instruments with different forms of spectral line-spread function. Here, two methods for calculating resolving power on a consistent scale are given. The first method is based on the principle that two spectral lines are just resolved when the mutual disturbance in fitting the fluxes of the lines reaches a threshold (here equal to that of sinc2 profiles at the Rayleigh criterion). The second criterion assumes that two spectrographs have equal resolving powers if the wavelength error in fitting a narrow spectral line is the same in each case (given equal signal flux and noise power). The two criteria give similar results and give rise to scaling factors that can be applied to bring resolving power calculated using the FWHM on to a consistent scale. The differences among commonly encountered line-spread functions are substantial, with a Lorentzian profile (as produced by an imaging Fabry–Perot interferometer) being a factor of two worse than the boxy profile from a projected circle (as produced by integration across the spatial dimension of a multi-mode fibre) when both have the same FWHM. The projected circle has a larger FWHM than its true resolution, so using FWHM to characterise the resolution of a spectrograph which is fed by multi-mode fibres significantly underestimates its true resolving power if it has small aberrations and a well-sampled profile.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Quantifying Resolving Power in Astronomical Spectra
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Quantifying Resolving Power in Astronomical Spectra
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Quantifying Resolving Power in Astronomical Spectra
      Available formats
      ×
Copyright
Corresponding author
3Email: G.Robertson@physics.usyd.edu.au
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

D. H. Jones , P. L. Shopbell , & J. Bland-Hawthorn 2002, MNRAS 329, 759

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Publications of the Astronomical Society of Australia
  • ISSN: 1323-3580
  • EISSN: 1448-6083
  • URL: /core/journals/publications-of-the-astronomical-society-of-australia
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 43 *
Loading metrics...

Abstract views

Total abstract views: 50 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th May 2017. This data will be updated every 24 hours.