Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T19:16:24.836Z Has data issue: false hasContentIssue false

Stability of Accretion Shocks with a Composite Cooling Function

Published online by Cambridge University Press:  16 May 2016

Curtis J. Saxton
Affiliation:
Special Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, NSW 2006, Australia
Kinwah Wu
Affiliation:
Special Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, NSW 2006, Australia
Helen Pongracic
Affiliation:
Air Operations Division, Aeronautical and Maritime Research Laboratory, DSTO, Vic. 3001, Australiasaxton@physics.usyd.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stability of accretion onto magnetic white dwarfs is investigated via perturbation analysis. We consider a cooling function with composite power laws, and the power-law indices are appropriate for bremsstrahlung and optically thick cyclotron cooling. We find that the presence of cyclotron cooling generally suppresses the instability, consistent with numerical simulations by other investigators.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 1997

References

Aizu, K. 1973, Prog. Theor. Phys., 49, 1184 Google Scholar
Bertschinger, E. 1986, ApJ, 304, 154Google Scholar
Chanmugam, G., Langer, S. H., & Shaviv, G. 1985, ApJ, 299, L87Google Scholar
Chevalier, R A., & Imamura, J. N. 1982, ApJ, 261, 543 Google Scholar
Cropper, M. 1990, Space Sci. Rev., 54, 195 CrossRefGoogle Scholar
Dgani, R., & Soker, N. 1994, ApJ, 434, 262CrossRefGoogle Scholar
Houck, J. C., & Chevalier, R A. 1992, ApJ, 395, 592 Google Scholar
Imamura, J. N. 1985, ApJ, 296, 128CrossRefGoogle Scholar
King, A. R., & Lasota, J. P. 1979, MNRAS, 188, 653 CrossRefGoogle Scholar
Lamb, D. Q., & Masters, A. R. 1979, ApJ, 234, L117CrossRefGoogle Scholar
Langer, S. H., Chanmugam, G., & Shaviv, G. 1981, ApJ, 245, L23Google Scholar
Langer, S. H., Chanmugam, G., & Shaviv, G. 1982, ApJ, 258, 289 CrossRefGoogle Scholar
Larsson, S. 1985, A&A, 145, L1Google Scholar
Larsson, S. 1987, A&A, 181, L15Google Scholar
Mason, K. O., et al. 1983, ApJ, 264, 575 Google Scholar
Middleditch, J. 1982, ApJ, 257, L71Google Scholar
Rybicki, G. B., & Lightman, A. P. 1979, Radiative Processes in Astrophysics (New York: Wiley)Google Scholar
Toth, G., & Draine, B. T. 1993, ApJ, 413, 176CrossRefGoogle Scholar
Wada, T., et al. 1980, Prog. Theor. Phys., 64, 1986 Google Scholar
Wu, K. 1994, PASA, 11, 61 CrossRefGoogle Scholar
Wu, K., Chanmugam, G., & Shaviv, G. 1992, ApJ, 397, 232 Google Scholar
Wu, K., Chanmugam, G., & Shaviv, G. 1994, ApJ, 426, 664 Google Scholar